Insights into the organic degradation by sulfite activation with a Fe3O4/g-C3N4 photocatalyst under visible LED: Transformation of SO4•- to 1O2

被引:10
|
作者
Liu, Shuang [1 ,2 ]
Wu, Hong [1 ,2 ]
Zheng, Huaili [1 ,2 ]
Zhang, Weizhen [1 ,2 ]
Ding, Wei [1 ,2 ]
Li, Hong [1 ,2 ]
Liu, Chao [1 ,2 ]
机构
[1] Chongqing Univ, Key Lab Three Gorges Reservoir Reg Ecoenvironm, Minist Educ, Chongqing 400045, Peoples R China
[2] Chongqing Univ, Coll Environm & Ecol, Chongqing 400044, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Photocatalysis; Graphitic carbon nitride; Sulfite activation; Reactive sulfur species; Singlet oxygen; GRAPHITIC CARBON NITRIDE; PEROXYMONOSULFATE ACTIVATION; CATALYZED SULFITE; SYSTEM MECHANISM; CHARGE-TRANSFER; DOPED G-C3N4; OXIDATION; REMOVAL; FE; DECOLORIZATION;
D O I
10.1016/j.jece.2023.110910
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sulfite (S(IV))-based advanced oxidation process has attracted widespread attention due to the generation of strongly oxidizing sulfate radicals (SO4 center dot-) and hydroxyl radicals (HO center dot) for contaminants remediation. However, the contaminant degradation by singlet oxygen (O-1(2)) through a nonradical pathway was still unclear in the S(IV) activation system. Herein, a magnetic Fe3O4/ g-C3N4 (MCN) composite was synthesized for the utilization as a visible-light catalyst to activate S(IV) under visible-LED (Vis-LED) for the organic degradation. The incorporation of Fe3O4 in g-C3N4 up-regulated the photocatalytic performance in the S(IV) activation for X-3B degradation, and > 98% of X-3B (20 mg L-1) was degraded with the degradation rate constant (k(obs)) of 0.110 min- 1 within 30 min. The SO4 center dot- and O-1(2) produced in the MCN/S(IV)/Vis-LED system were identified as the primary reactive species through the quenching experiments and electron spin resonance. Interestingly, the light-induced generation of superoxide radical (O-2(center dot-)) played a negligible role in the formation of O-1(2), and most of O-1(2) was corroborated to be originated from SO4 center dot- besides SO5 center dot- , which was rarely reported in other S(IV) activation processes. The catalysts before and after utilization were characterized to further elucidate the mechanisms for the S(IV) activation. There were two possible pathways for the S(IV) activation: the electron transfer from S(IV) to the photo-generated holes and the ligand-to-metal charge-transfer (LMCT) within the surface Fe(III)-S(IV) complexes. Furthermore, the MCN/S(IV)/Vis-LED system was of high resistance to complex water matrixes (pH, inorganic anions, etc.), demonstrating its application perspective in the purification of wastewater containing organic pollutants.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Hydrothermal synthesis of Fe3O4/TiO2/g-C3N4: Advanced photocatalytic application
    Raza, Adil
    Shen, Honglie
    Haidry, Azhar Ali
    Cui, Shusong
    APPLIED SURFACE SCIENCE, 2019, 488 : 887 - 895
  • [42] Magnetic recyclable heterogeneous catalyst Fe3O4/g-C3N4 for tetracycline hydrochloride degradation via photo-Fenton process under visible light
    Cui, Kang-Ping
    Yang, Ting-Ting
    Chen, Yi-Han
    Weerasooriya, Rohan
    Li, Guang-Hong
    Zhou, Kai
    Chen, Xing
    ENVIRONMENTAL TECHNOLOGY, 2022, 43 (21) : 3341 - 3354
  • [43] g-C3N4/Fe3O4 nanocomposites as a novel fluorescent probe for the detection of Cu2+
    Shan Wang
    Fang Zhang
    Li Yi
    Ruirui Huan
    Nan Kang
    Journal of Nanoparticle Research, 2020, 22
  • [44] Magnetically separable quaternary g-C3N4/Fe3O4/AgBr/rGO nanocomposite for enhanced photocatalytic degradation of ofloxacin in water under visible light irradiation
    Liu, Xiyang
    Dawson, Graham
    Papadikis, Konstantinos
    Yap, Pow-Seng
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2025, 145 : 561 - 576
  • [45] Ternary magnetic g-C3N4/Fe3O4/AgI nanocomposites: Novel recyclable photocatalysts with enhanced activity in degradation of different pollutants under visible light
    Akhundi, Anise
    Habibi-Yangieh, Aziz
    MATERIALS CHEMISTRY AND PHYSICS, 2016, 174 : 59 - 69
  • [46] Construction of Ag2O-modified g-C3N4 photocatalyst for rapid visible light degradation of ofloxacin
    Huifen Yin
    Hanlu Shi
    Lei Sun
    Dongsheng Xia
    Xiangjuan Yuan
    Environmental Science and Pollution Research, 2021, 28 : 11650 - 11664
  • [47] Construction of Ag2O-modified g-C3N4 photocatalyst for rapid visible light degradation of ofloxacin
    Yin, Huifen
    Shi, Hanlu
    Sun, Lei
    Xia, Dongsheng
    Yuan, Xiangjuan
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (09) : 11650 - 11664
  • [48] Synthesis and characterization of Fe2SiO4/Fe2O3/g-C3N4 ternary heterojunction photocatalyst with enhanced photocatalytic activity under visible light
    Hosseini, Masoud
    Ghanbari, Mojgan
    Alzaidy, Asaad H.
    Dawi, Elmuez A.
    Mahdi, Makarim A.
    Jasim, Layth S.
    Sobhani, Azam
    Salavati-Niasari, Masoud
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 60 : 1370 - 1382
  • [49] Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants
    Cui, Yanjuan
    Ding, Zhengxin
    Liu, Ping
    Antonietti, Markus
    Fu, Xianzhi
    Wang, Xinchen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (04) : 1455 - 1462
  • [50] Light switchable radical and non-radical periodate activation by Fe3O4/g-C3N4 for efficient organic contaminant elimination
    He, Jintao
    Wang, Chao
    Xu, Yin
    Xu, Wenjun
    Liu, Fuzhen
    Ye, Zhihong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (06):