Recurrent and convolutional neural networks for sequential multispectral optoacoustic tomography (MSOT) imaging

被引:0
|
作者
Juhong, Aniwat [1 ,2 ]
Li, Bo [1 ,2 ]
Liu, Yifan [1 ,2 ]
Yao, Cheng-You [2 ,3 ]
Yang, Chia-Wei [2 ,4 ]
Agnew, Dalen W. [5 ]
Lei, Yu Leo [6 ]
Luker, Gary D. [7 ]
Bumpers, Harvey [8 ]
Huang, Xuefei [2 ,3 ,4 ]
Piyawattanametha, Wibool [1 ,2 ,9 ]
Qiu, Zhen [1 ,2 ,3 ]
机构
[1] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI USA
[2] Michigan State Univ, Inst Quantitat Hlth Sci & Engn, E Lansing, MI USA
[3] Michigan State Univ, Dept Biomed Engn, E Lansing, MI 48824 USA
[4] Michigan State Univ, Dept Chem, E Lansing, MI USA
[5] Michigan State Univ, Coll Vet Med, Dept Pathobiol & Diagnost Invest, E Lansing, MI USA
[6] Univ Michigan, Dept Periodont & Oral Med, Ann Arbor, MI USA
[7] Univ Michigan, Dept Radiol Microbiol & Immunol & Biomed Engn, Ann Arbor, MI USA
[8] Michigan State Univ, Dept Surg, E Lansing, MI USA
[9] King Mongkuts Inst Technol Ladkrabang KMITL, Sch Engn, Dept Biomed Engn, Bangkok, Thailand
基金
美国国家科学基金会;
关键词
convolutional neural networks; multispectral optoacoustic tomography; recurrent neural networks; volumetric imaging; IN-VIVO;
D O I
10.1002/jbio.202300142
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Multispectral optoacoustic tomography (MSOT) is a beneficial technique for diagnosing and analyzing biological samples since it provides meticulous details in anatomy and physiology. However, acquiring high through-plane resolution volumetric MSOT is time-consuming. Here, we propose a deep learning model based on hybrid recurrent and convolutional neural networks to generate sequential cross-sectional images for an MSOT system. This system provides three modalities (MSOT, ultrasound, and optoacoustic imaging of a specific exogenous contrast agent) in a single scan. This study used ICG-conjugated nanoworms particles (NWs-ICG) as the contrast agent. Instead of acquiring seven images with a step size of 0.1 mm, we can receive two images with a step size of 0.6 mm as input for the proposed deep learning model. The deep learning model can generate five other images with a step size of 0.1 mm between these two input images meaning we can reduce acquisition time by approximately 71%.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Assessing PK parameters using dynamic contrast enhanced multispectral optoacoustic tomography (DCE-MSOT)
    Morscher, Stefan
    Driessen, Wouter H.
    Burton, Neal C.
    Sardella, Thomas
    Razansky, Daniel
    Ntziachristos, Vasilis
    CANCER RESEARCH, 2014, 74 (19)
  • [32] Non-invasive assessment of intestinal inflammatory activity in Ulcerative Colitis by Multispectral Optoacoustic Tomography (MSOT)
    Klett, D.
    Jesper, D.
    Vitali, F.
    Federle, A.
    Atreya, R.
    Strobel, D.
    Leppkes, M.
    Neufert, C.
    Rath, T.
    Neurath, M. F.
    Waldner, M. J.
    JOURNAL OF CROHNS & COLITIS, 2022, 16 : I062 - I062
  • [33] Noninvasive Imaging of Colitis Using Multispectral Optoacoustic Tomography
    Bhutiani, Neal
    Grizzle, William E.
    Galandiuk, Susan
    Otali, Denis
    Dryden, Gerald W.
    Egilmez, Nejat K.
    McNally, Lacey R.
    JOURNAL OF NUCLEAR MEDICINE, 2017, 58 (06) : 1009 - 1012
  • [34] Multispectral Optoacoustic Tomography for Functional Imaging in Vascular Research
    Granja, Tiago
    de Andrade, Sergio Faloni
    Rodrigues, Luis Monteiro
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022, (184):
  • [35] Precision of handheld multispectral optoacoustic tomography for muscle imaging
    Wagner, Alexandra L.
    Danko, Vera
    Federle, Anna
    Klett, Daniel
    Simon, David
    Heiss, Rafael
    Juengert, Joerg
    Uder, Michael
    Schett, Georg
    Neurath, Markus F.
    Woelfle, Joachim
    Waldner, Maximilian J.
    Trollmann, Regina
    Regensburger, Adrian P.
    Knieling, Ferdinand
    PHOTOACOUSTICS, 2021, 21
  • [36] Measurement of changes in blood oxygenation using MultiSpectral Optoacoustic Tomography (MSOT) allows assessment of tumor development
    Tomaszewski, Michal R.
    Quiros-Gonzalez, Isabel
    Joseph, James
    Bohndiek, Sarah E.
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2016, 2016, 9708
  • [37] Optical Imaging of Cancer Heterogeneity with Multispectral Optoacoustic Tomography
    Herzog, Eva
    Taruttis, Adrian
    Beziere, Nicolas
    Lutich, Andrey A.
    Razansky, Daniel
    Ntziachristos, Vasilis
    RADIOLOGY, 2012, 263 (02) : 461 - 468
  • [38] Mesoscopic imaging of fluorescent proteins using multi-spectral optoacoustic tomography (MSOT)
    Razansky, Daniel
    Vinegoni, Claudio
    Ntziachristos, Vasilis
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2009, 2009, 7177
  • [39] Multispectral optoacoustic tomography (MSOT) as a novel approach for dynamic, noninvasive assessment of tumor therapy response and chronic inflammation
    Driessen, Wouter H. P.
    Burton, Neal
    Schwoeppe, Christian
    Berd, Wolfgang E.
    Weinhage, Toni
    Varga, Georg
    Geyer, Christiane
    CANCER RESEARCH, 2015, 75
  • [40] WST11 Vascular Targeted Photodynamic Therapy Effect Monitoring by Multispectral Optoacoustic Tomography (MSOT) in Mice
    Neuschmelting, Volker
    Kim, Kwanghee
    Malekzadeh-Najafabadi, Jaber
    Jebiwott, Sylvia
    Prakash, Jaya
    Scherz, Avigdor
    Coleman, Jonathan A.
    Kircher, Moritz F.
    Ntziachristos, Vasilis
    THERANOSTICS, 2018, 8 (03): : 723 - 734