The deformed modified Korteweg-de Vries equation: Multi-soliton solutions and their interactions

被引:2
|
作者
Kumar, S. Suresh [1 ]
机构
[1] Thiruvalluvar Univ, C Abdul Hakeem Coll Autonomous, PG & Reserarch Dept Math, Ranipet 632509, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2023年 / 97卷 / 03期
关键词
Deformed modified Korteweg-de Vries equation; Hirota's bilinear method; solitons; ION-ACOUSTIC SOLITON; CONSERVATION-LAWS; MKDV EQUATIONS; INTEGRABILITY; WAVES; PROPAGATION; MODELS; TDGL;
D O I
10.1007/s12043-023-02581-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we demonstrate how Hirota's bilinear method can be employed to derive single-soliton, two-soliton and three-soliton solutions of the deformed modified Korteweg-de Vries (KdV) equation. We note that the derived soliton solutions depend on the time-dependent function, revealing that the speed of the soliton solutions no longer explicitly depends on wave amplitude. Finally, we graphically demonstrate the evolution of multi-soliton solutions and their interactions.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Deformed Korteweg-De Vries equation with symbolic computation
    Gao, YT
    Tian, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2001, 12 (09): : 1335 - 1344
  • [42] Soliton interaction for the extended Korteweg-de Vries equation
    Marchant, TR
    Smyth, NF
    IMA JOURNAL OF APPLIED MATHEMATICS, 1996, 56 (02) : 157 - 176
  • [43] Soliton interaction for the extended Korteweg-de Vries equation
    Marchant, T.R.
    Smyth, N.F.
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 1996, 56 (02): : 157 - 176
  • [44] STOCHASTIC MODIFIED KORTEWEG-DE VRIES EQUATION
    BLASZAK, M
    ACTA PHYSICA POLONICA A, 1986, 70 (05) : 503 - 515
  • [45] Soliton-Breather Interaction: The Modified Korteweg-de Vries Equation Framework
    Didenkulova, Ekaterina
    Pelinovsky, Efim
    SYMMETRY-BASEL, 2020, 12 (09):
  • [46] MODIFIED KORTEWEG-DE VRIES EQUATION IN ELECTROHYDRODYNAMICS
    PERELMAN, TL
    FRIDMAN, AK
    ELYASHEV.MM
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1974, 66 (04): : 1316 - 1323
  • [47] ANALYSIS OF A MODIFIED KORTEWEG-DE VRIES EQUATION
    LEO, M
    LEO, RA
    SOLIANI, G
    PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1475 - 1466
  • [48] On the singular solutions of the Korteweg-de Vries equation
    S. I. Pokhozhaev
    Mathematical Notes, 2010, 88 : 741 - 747
  • [49] Computability of solutions of the Korteweg-de Vries equation
    Gay, W
    Zhang, BY
    Zhong, N
    MATHEMATICAL LOGIC QUARTERLY, 2001, 47 (01) : 93 - 110
  • [50] Quasiperiodic solutions of the Korteweg-de Vries equation
    Yu. N. Zaiko
    Technical Physics Letters, 2002, 28 : 235 - 236