The deformed modified Korteweg-de Vries equation: Multi-soliton solutions and their interactions

被引:2
|
作者
Kumar, S. Suresh [1 ]
机构
[1] Thiruvalluvar Univ, C Abdul Hakeem Coll Autonomous, PG & Reserarch Dept Math, Ranipet 632509, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2023年 / 97卷 / 03期
关键词
Deformed modified Korteweg-de Vries equation; Hirota's bilinear method; solitons; ION-ACOUSTIC SOLITON; CONSERVATION-LAWS; MKDV EQUATIONS; INTEGRABILITY; WAVES; PROPAGATION; MODELS; TDGL;
D O I
10.1007/s12043-023-02581-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we demonstrate how Hirota's bilinear method can be employed to derive single-soliton, two-soliton and three-soliton solutions of the deformed modified Korteweg-de Vries (KdV) equation. We note that the derived soliton solutions depend on the time-dependent function, revealing that the speed of the soliton solutions no longer explicitly depends on wave amplitude. Finally, we graphically demonstrate the evolution of multi-soliton solutions and their interactions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] The deformed modified Korteweg–de Vries equation: Multi-soliton solutions and their interactions
    S Suresh Kumar
    Pramana, 97
  • [2] Backlund transformation and multi-soliton solutions for the discrete Korteweg-de Vries equation
    Dong, Suyalatu
    Lan, Zhong-Zhou
    Gao, Bo
    Shen, Yujia
    APPLIED MATHEMATICS LETTERS, 2022, 125
  • [3] An extended Korteweg-de Vries equation: multi-soliton solutions and conservation laws
    Yildirim, Yakup
    Yasar, Emrullah
    NONLINEAR DYNAMICS, 2017, 90 (03) : 1571 - 1579
  • [4] A two-component modified Korteweg-de Vries equation: Riemann-Hilbert problem and multi-soliton solutions
    Yan, Xue-Wei
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (03) : 569 - 579
  • [5] Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: Noncommutative soliton solutions
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [6] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [7] An extended Korteweg–de Vries equation: multi-soliton solutions and conservation laws
    Yakup Yıldırım
    Emrullah Yaşar
    Nonlinear Dynamics, 2017, 90 : 1571 - 1579
  • [8] Exact soliton solutions of the discrete modified Korteweg-de Vries (mKdV) equation
    Zhang, Yufeng
    Mei, Jianqin
    Hon, Y. C.
    PHYSICS ESSAYS, 2010, 23 (02) : 276 - 284
  • [9] Soliton surfaces for complex modified Korteweg-de Vries equation
    Bauyrzhan, Gulnur
    Yesmakhanova, Kuralay
    Yerzhanov, Koblandy
    Ybyraiymova, Sveta
    8TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCE, 2019, 1391