Multimodal Fake News Detection Incorporating External Knowledge and User Interaction Feature

被引:0
|
作者
Fu, Lifang [1 ]
Liu, Shuai [2 ]
机构
[1] Northeast Agr Univ, Coll Letters & Sci, Harbin 150000, Peoples R China
[2] Northeast Agr Univ, Coll Engn, Harbin 150000, Peoples R China
关键词
D O I
10.1155/2023/8836476
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the development of online social media, the number of various news has exploded. While social media provides an information platform for news release and dissemination, it also makes fake news proliferate, which may cause potential social risks. How to detect fake news quickly and accurately is a difficult task. The multimodal fusion fake news detection model is the current research focus and development trend. However, in terms of content, most existing methods lack the mining of background knowledge hidden in the news content and ignore the connection between background knowledge and existing knowledge system. In terms of the propagation chain, the research tends to emphasize only the single chain from the previous communication node, ignoring the intricate communication chain and the mutual influence relationship among users. To address these problems, this paper proposes a multimodal fake news detection model, A-KWGCN, based on knowledge graph and weighted graph convolutional network (GCN). The model fully extracted the features of the content and the interaction between users of the news dissemination. On the one hand, the model mines relevant knowledge concepts from the news content and links them with the knowledge entities in the wiki knowledge graph, and integrates knowledge entities and entity context as auxiliary information. On the other hand, inspired by the "similarity effect" in social psychology, this paper constructs a user interaction network and defines the weighted GCN by calculating the feature similarity among users to analyze the mutual influence of users. Two public datasets, Twitter15 and Twitter16, are selected to evaluate the model, and the accuracy reaches 0.905 and 0.930, respectively. In the comparison experiments, A-KWGCN model has more significant advantages than the other six comparison models in four evaluation indexes. Also, ablation experiments are conducted to verify that knowledge module and weighted GCN module play the significant role in the detection of fake news.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] FMC: Multimodal fake news detection based on multi-granularity feature fusion and contrastive learning
    Yan, Facheng
    Zhang, Mingshu
    Wei, Bin
    Ren, Kelan
    Jiang, Wen
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 109 : 376 - 393
  • [32] Learning Frequency-Aware Cross-Modal Interaction for Multimodal Fake News Detection
    Bai, Yan
    Liu, Yanfeng
    Li, Yongjun
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (05): : 6568 - 6579
  • [33] Feature Drift in Fake News Detection: An Interpretable Analysis
    Fu, Chenbo
    Pan, Xingyu
    Liang, Xuejiao
    Yu, Shanqing
    Xu, Xiaoke
    Min, Yong
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [34] Proposing a model of social media user interaction with fake news
    Shirsat, Abhijeet R.
    Gonzalez, Angel F.
    May, Judith J.
    JOURNAL OF INFORMATION COMMUNICATION & ETHICS IN SOCIETY, 2022, 20 (01): : 134 - 149
  • [35] Multimodal Fake News Detection with Contrastive Learning and Optimal Transport
    Shen, Xiaorong
    Huang, Maowei
    Hu, Zheng
    Cai, Shimin
    Zhou, Tao
    FRONTIERS IN COMPUTER SCIENCE, 2024, 6
  • [36] Inter-modality Discordance for Multimodal Fake News Detection
    Singhal, Shivangi
    Dhawan, Mudit
    Shah, Rajiv Ratn
    Kumaraguru, Ponnurangam
    ACM International Conference Proceeding Series, 2021,
  • [37] Multimodal Fake News Detection with Textual, Visual and Semantic Information
    Giachanou, Anastasia
    Zhang, Guobiao
    Rosso, Paolo
    TEXT, SPEECH, AND DIALOGUE (TSD 2020), 2020, 12284 : 30 - 38
  • [38] Research on fake news detection based on CLIP multimodal mechanism
    Xu, Jinzhong
    Zhang, Yujie
    Liu, Weiguang
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 72 - 79
  • [39] Fake News Detection Based on the Correlation Extension of Multimodal Information
    Li, Yanqiang
    Ji, Ke
    Ma, Kun
    Chen, Zhenxiang
    Zhou, Jin
    Wu, Jun
    WEB AND BIG DATA, PT I, APWEB-WAIM 2022, 2023, 13421 : 443 - 450
  • [40] Multimodal Fusion with BERT and Attention Mechanism for Fake News Detection
    Nguyen Manh Duc Tuan
    Pham Quang Nhat Minh
    2021 RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF 2021), 2021, : 43 - 48