Virus Detection and Identification in Minutes Using Single-Particle Imaging and Deep Learning

被引:19
|
作者
Shiaelis, Nicolas [1 ]
Tometzki, Alexander [1 ]
Peto, Leon [2 ,6 ]
McMahon, Andrew [1 ]
Hepp, Christof [1 ]
Bickerton, Erica [3 ]
Favard, Cyril [4 ]
Muriaux, Delphine [4 ,5 ]
Andersson, Monique [6 ]
Oakley, Sarah [6 ]
Vaughan, Ali [2 ,7 ,8 ]
Matthews, Philippa C. [2 ,7 ]
Stoesser, Nicole [2 ,9 ,10 ]
Crook, Derrick W. [9 ,10 ]
Kapanidis, Achillefs N. [1 ,11 ]
Robb, Nicole C. [1 ,12 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Biol Phys Res Grp, Oxford OX1 3PU, England
[2] Univ Oxford, Nuffield Dept Med, Oxford OX3 9DU, England
[3] Pirbright Inst, Pirbright GU24 0NF, England
[4] Univ Montpellier, Membrane Domains & Viral Assembly, IRIM, F-34293 Montpellier, France
[5] Univ Montpellier, CEMIPAI, F-34293 Montpellier, France
[6] Oxford Univ Hosp NHS Fdn Trust, Dept Microbiol, Oxford OX3 9DU, England
[7] Univ Oxford, Oxford Biomed Res Ctr, Nuffield Dept Med, Oxford OX3 9DU, England
[8] Univ Oxford, Oxford Biomed Res Ctr, NIHR, Oxford OX3 9DU, England
[9] Univ Oxford, Nuffield Dept Med, Oxford OX3 9DU, England
[10] Univ Oxford, NIHR Hlth Protect Res Unit Healthcare Associated I, Publ Hlth England, Oxford OX3 9DU, England
[11] Univ Oxford, Kavli Inst Nanosci Discovery, Oxford OX1 3QU, England
[12] Univ Warwick, Warwick Med Sch, Coventry CV4 7AL, England
基金
英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
SARS-CoV-2; influenza; viral diagnostics; fluorescence microscopy; machine learning; SYSTEM;
D O I
10.1021/acsnano.2c10159
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The increasing frequency and magnitude of viral outbreaks in recent decades, epitomized by the COVID-19 pandemic, has resulted in an urgent need for rapid and sensitive diagnostic methods. Here, we present a methodology for virus detection and identification that uses a convolutional neural network to distinguish between microscopy images of fluorescently labeled intact particles of different viruses. Our assay achieves labeling, imaging, and virus identification in less than 5 min and does not require any lysis, purification, or amplification steps. The trained neural network was able to differentiate SARS-CoV-2 from negative clinical samples, as well as from other common respiratory pathogens such as influenza and seasonal human coronaviruses. We were also able to differentiate closely related strains of influenza, as well as SARS-CoV-2 variants. Additional and novel pathogens can easily be incorporated into the test through software updates, offering the potential to rapidly utilize the technology in future infectious disease outbreaks or pandemics. Single-particle imaging combined with deep learning therefore offers a promising alternative to traditional viral diagnostic and genomic sequencing methods and has the potential for significant impact.KEYWORDS: SARS-CoV-2, influenza, viral diagnostics, fluorescence microscopy, machine learning
引用
收藏
页码:697 / 710
页数:14
相关论文
共 50 条
  • [31] Imaging of molecular surface dynamics in brain slices using single-particle tracking
    Biermann, B.
    Sokoll, S.
    Klueva, J.
    Missler, M.
    Wiegert, J. S.
    Sibarita, J. -B.
    Heine, M.
    NATURE COMMUNICATIONS, 2014, 5
  • [32] Biological single-particle imaging using XFELs - towards the next resolution revolution
    Oberthuer, Dominik
    IUCRJ, 2018, 5 : 663 - 666
  • [33] Imaging of molecular surface dynamics in brain slices using single-particle tracking
    B. Biermann
    S. Sokoll
    J. Klueva
    M. Missler
    J. S. Wiegert
    J. -B. Sibarita
    M. Heine
    Nature Communications, 5
  • [34] Single-particle kinetics of influenza virus membrane fusion
    Floyd, Daniel L.
    Ragains, Justin R.
    Skehel, John J.
    Harrison, Stephen C.
    van Oijen, Antoine M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (40) : 15382 - 15387
  • [35] An encryption–decryption framework to validating single-particle imaging
    Zhou Shen
    Colin Zhi Wei Teo
    Kartik Ayyer
    N. Duane Loh
    Scientific Reports, 11
  • [36] Modular Imaging Scaffold for Single-Particle Electron Microscopy
    Aissaoui, Nesrine
    Lai-Kee-Him, Josephine
    Mills, Allan
    Declerck, Nathalie
    Morichaud, Zakia
    Brodolin, Konstantin
    Baconnais, Sonia
    Le Cam, Eric
    Charbonnier, Jean Baptiste
    Sounier, Remy
    Granier, Sebastien
    Ropars, Virginie
    Bron, Patrick
    Bellot, Gaetan
    ACS NANO, 2021, 15 (03) : 4186 - 4196
  • [37] A Reconstruction Algorithm for Single-Particle Diffraction Imaging Experiments
    Loh, Duane Ne-Te
    Elser, Veit
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2009, 65 : S73 - S73
  • [38] Reconstruction algorithm for single-particle diffraction imaging experiments
    Loh, Ne-Te Duane
    Elser, Veit
    PHYSICAL REVIEW E, 2009, 80 (02):
  • [39] Single and multiple drones detection and identification using RF based deep learning algorithm
    Sazdic-Jotic, Boban
    Pokrajac, Ivan
    Bajcetic, Jovan
    Bondzulic, Boban
    Obradovic, Danilo
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 187
  • [40] Characterization of the effect of physiological cations on quantum dots by using single-particle detection
    Zhang, Chun-yang
    Li, Derong
    ANALYST, 2010, 135 (09) : 2355 - 2359