The negative effect of natural convection in a vertical shell and tube latent heat energy storage unit

被引:0
|
作者
Wang, Leli [1 ,3 ]
Wang, Liangbi [2 ,3 ]
Wang, Ye [1 ,3 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Environm & Municipal Engn, Lanzhou 730070, Peoples R China
[2] Lanzhou Jiaotong Univ, Sch Mech Engn, Lanzhou 730070, Gansu, Peoples R China
[3] Lanzhou Jiaotong Univ, Key Lab Railway Vehicle Thermal Engn MOE, Lanzhou 730070, Gansu, Peoples R China
关键词
Coupling calculation; Charging process; Enthalpy method; Latent heat energy storage; Natural convection; Negative effect; PHASE-CHANGE; SYSTEM; SIMULATION;
D O I
10.1016/j.applthermaleng.2024.122688
中图分类号
O414.1 [热力学];
学科分类号
摘要
Heat transfer in a latent heat energy storage unit is not intensive and is primarily determined by the low thermal diffusivity of phase change material. Then one may think even weak natural convection in the unit can significantly enhance heat transfer, and the role of natural convection in the unit is of great importance. It is very difficult to split out the role of natural convection from the experimental results. This paper investigates the role of natural convection in a vertically posited shell and tube latent heat energy storage unit by employing one model considering natural convection and the other model without considering natural convection. A critical vertical annular layer thickness and convection impact factor are proposed to determine the occurrence of natural convection and the effect of natural convection on the charging process. The results indicate that the critical vertical annular layer thickness to judge the occurrence of natural convection is 1.04 mm for the vertical unit analyzed in the present paper. The unit considering natural convection increases the time needed to complete the charging process by 46 % compared to the unit without considering natural convection, indicating that natural convection has negative effect on heat transfer, despite the gradual strengthening of natural convection in the vertical unit. The main reason is that natural convection brings phase change material with high temperature to region downstream the tube, resulting in a reduction of the temperature gradient on the tube wall downstream and the average heat flux normal to the tube surface. This might be indicated by that the convection impact factor is greater than 1 before 660 s, and is less than 1 after 660 s. The melting time increase caused by natural convection is respectively 39 %, 42 % and 46 % for win = 0.013, 0.13 and 0.28 m/s, and 46 %, 51 % and 60 % for theta f.in = 5, 10 and 20 K. This demonstrates that the negative effect of natural convection is even more noticeable at the higher flow velocities and inlet temperatures. But the existence of negative effect of the natural convection is independent of the heat transfer fluid inlet velocity and temperature.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Experimental study on discharging performance of vertical multitube shell and tube latent heat thermal energy storage
    Raul, Appasaheb K.
    Bhavsar, Pratik
    Saha, Sandip Kumar
    JOURNAL OF ENERGY STORAGE, 2018, 20 : 279 - 288
  • [22] Experimental study on the effect of tube rotation on performance of horizontal shell and tube latent heat energy storage
    Fathi, Mohammed Ibrahim
    Mussa, Munther Abdullah
    JOURNAL OF ENERGY STORAGE, 2021, 39
  • [23] A Periodic Horizontal Shell-And-Tube Structure as an Efficient Latent Heat Thermal Energy Storage Unit
    Woloszyn, Jerzy
    Szopa, Krystian
    ENERGIES, 2024, 17 (22)
  • [24] A Periodic Horizontal Shell-And-Tube Structure as an Efficient Latent Heat Thermal Energy Storage Unit
    Woloszyn, Jerzy
    Szopa, Krystian
    Energies, 17 (22):
  • [25] Experimental investigation of the effect of perforated fins on thermal performance enhancement of vertical shell and tube latent heat energy storage systems
    Karami, Ramin
    Kamkari, Babak
    ENERGY CONVERSION AND MANAGEMENT, 2020, 210
  • [26] Influence of orientation on thermal performance of shell and tube latent heat storage unit
    Mehta, Digant S.
    Solanki, Karan
    Rathod, Manish K.
    Banerjee, Jyotirmay
    APPLIED THERMAL ENGINEERING, 2019, 157
  • [27] Investigation of the effect of geometric and operating parameters on thermal behavior of vertical shell-and-tube latent heat energy storage systems
    Seddegh, Saeid
    Wang, Xiaolin
    Joybari, Mahmood Mastani
    Haghighat, Fariborz
    ENERGY, 2017, 137 : 69 - 82
  • [28] Effects of shell modifications and operational parameters on melting uniformity of a vertical multi-section shell-and-tube latent heat thermal energy storage unit
    Chen, Lanxin
    Fan, Aiwu
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [29] Heat transfer characteristics of PCM inside a modified design of shell and tube latent heat thermal energy storage unit
    Zaytoun, Mostafa M.
    El-Bashouty, Mohaned M.
    Sorour, Medhat M.
    Alnakeeb, Mohamed A.
    CASE STUDIES IN THERMAL ENGINEERING, 2023, 49
  • [30] Effect of the circumferential and radial graded metal foam on horizontal shell-and-tube latent heat thermal energy storage unit
    Yang, Chao
    Xu, Yang
    Cai, Xiao
    Zheng, Zhang-Jing
    SOLAR ENERGY, 2021, 226 : 225 - 235