RMCW: An Improved Residual Network With Multi-Channel Weighting for Machinery Fault Diagnosis

被引:1
|
作者
Liu, Zheng [1 ]
Yu, Hu [2 ]
Xu, Kun [1 ]
Miao, Xiaodong [1 ]
机构
[1] Nanjing Tech Univ, Sch Mech & Power Engn, Nanjing 210000, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Natl Key Lab Sci & Technol Helicopter Transmiss, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Fault diagnosis; Electric shock; Timing; Residual neural networks; Encoding; Data models; Deep learning; Vibration control; Feature fusion; fault diagnosis; deep learning; vibration signal; AUTOENCODER;
D O I
10.1109/ACCESS.2023.3328906
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Faced with increasingly complex industrial data, standard machine learning algorithms struggle to effectively extract both linear and nonlinear features. In this study, an improved residual network (ResNet) called Residual network with Independent Multi-Channel Weighting (RMCW) to tackle the nonlinear, temporally uncertain, and unevenly distributed fault. Firstly, a strategy for constructing the multi-channel vibration intrinsic mode function (IMF) images is designed to obtain the primary features by combing the empirical mode decomposition (EMD) and the gramian angular field (GAF). Secondly, a dynamic receptive field (DRF) with independent channel weighting is utilized to adaptively fuse the multi-channel features. This renders both initialization parameters for each individual channel and DRF parameters mutually independently adaptive to the fault features in the different batch. Thirdly, the RMCW model is built by inputting the fused features to the network of 9 residual building blocks. Two experimental cases verify that the propose method is effective for the machinery fault diagnosis and is superior to the comparing methods.
引用
收藏
页码:124472 / 124483
页数:12
相关论文
共 50 条
  • [41] Adaptive resize-residual deep neural network for fault diagnosis of rotating machinery
    Zou, Li
    Lam, Heung Fai
    Hu, Jun
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (04): : 2193 - 2213
  • [42] An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis
    Jiang, Hongkai
    Li, Chengliang
    Li, Huaxing
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 36 (02) : 225 - 239
  • [43] Multi-Scale Channel Mixing Convolutional Network and Enhanced Residual Shrinkage Network for Rolling Bearing Fault Diagnosis
    Li, Xiaoxu
    Chen, Jiaming
    Wang, Jianqiang
    Wang, Jixuan
    Wang, Jiahao
    Li, Xiaotao
    Kan, Yingnan
    ELECTRONICS, 2025, 14 (05):
  • [44] Enhanced deep residual network with multilevel correlation information for fault diagnosis of rotating machinery
    Xiong, Shoucong
    He, Shuai
    Xuan, Jianping
    Xia, Qi
    Shi, Tielin
    JOURNAL OF VIBRATION AND CONTROL, 2021, 27 (15-16) : 1713 - 1723
  • [45] Integrated decision-making with adaptive feature weighting adversarial network for multi-target domain compound fault diagnosis of machinery
    Zhang, Xuepeng
    Wang, Jinrui
    Zhang, Zongzhen
    Han, Baokun
    Bao, Huaiqian
    Jiang, Xingxing
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [46] Fault Diagnosis of Variable Working Conditions Based on Transfer Learning and Multi-channel CNN-LSTM Network
    Che, Kang
    Jin, Yongze
    Mu, Lingxia
    Li, Yankai
    Zhang, Jian
    Xie, Guo
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 658 - 663
  • [47] Gearbox fault diagnosis based on feature learning of multi-channel one-dimensional convolutional neural network
    Ye Z.
    Yu J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (20): : 55 - 66
  • [48] Fault Diagnosis of Autonomous Underwater Vehicle with Missing Data Based on Multi-Channel Full Convolutional Neural Network
    Wu, Yunkai
    Wang, Aodong
    Zhou, Yang
    Zhu, Zhiyu
    Zeng, Qingjun
    MACHINES, 2023, 11 (10)
  • [49] A Deep Learning Model for Fault Diagnosis with a Deep Neural Network and Feature Fusion on Multi-Channel Sensory Signals
    Ye, Qing
    Liu, Shaohu
    Liu, Changhua
    SENSORS, 2020, 20 (15) : 1 - 19
  • [50] Rolling bearing fault diagnosis based on multi-scale weighted visibility graph and multi-channel graph convolution network
    Zuo, Dong
    Tang, Tang
    Chen, Ming
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)