Visual SLAM Integration With Semantic Segmentation and Deep Learning: A Review

被引:28
|
作者
Pu, Huayan [1 ]
Luo, Jun [1 ]
Wang, Gang [1 ]
Huang, Tao [1 ]
Liu, Hongliang [1 ]
Luo, Jun [1 ]
机构
[1] Chongqing Univ, Coll Mech & Vehicle Engn, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Deep learning; robots; semantic segmentation; simultaneous localization and mapping (SLAM); INERTIAL ODOMETRY; SIMULTANEOUS LOCALIZATION; K-MEANS; TRACKING; ROBUST; RECONSTRUCTION; VERSATILE; VISION; ONLINE;
D O I
10.1109/JSEN.2023.3306371
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Simultaneous localization and mapping (SLAM) technology is essential for robots to navigate unfamiliar environments. It utilizes the sensors the robot carries to answer the question "Where am I?" Of the available sensors, cameras are commonly used. Compared to other sensors like light detection and ranging (LiDARs), the method based on cameras, known as visual SLAM, has been extensively explored by researchers due to the affordability and rich image data cameras provide. Although conventional visual SLAM algorithms have been able to accurately build a map in static environments, dynamic environments present a significant challenge for visual SLAM in practical robotics scenarios. While efforts have been made to address this issue, such as adding semantic segmentation to conventional algorithms, a comprehensive literature review is still lacking. This article discusses the challenges and approaches of visual SLAM with a focus on dynamic objects and their impact on feature extraction and mapping accuracy. First, two classical approaches of conventional visual SLAM are reviewed; then, this article explores the application of deep learning in the front-end and back-end of visual SLAM. Next, visual SLAM in dynamic environments is analyzed and summarized, and insights into future developments are elaborated upon. This article provides effective inspiration for researchers on how to combine deep learning and semantic segmentation with visual SLAM to promote its development.
引用
收藏
页码:22119 / 22138
页数:20
相关论文
共 50 条
  • [41] How deep learning is empowering semantic segmentationTraditional and deep learning techniques for semantic segmentation: A comparison
    Uroosa Sehar
    Muhammad Luqman Naseem
    Multimedia Tools and Applications, 2022, 81 : 30519 - 30544
  • [42] A Survey of Deep Learning Application in Dynamic Visual SLAM
    Lai, Dongcheng
    Zhang, Yunjian
    Li, Congduan
    2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020), 2020, : 279 - 283
  • [43] Review the state-of-the-art technologies of semantic segmentation based on deep learning
    Mo, Yujian
    Wu, Yan
    Yang, Xinneng
    Liu, Feilin
    Liao, Yujun
    Neurocomputing, 2022, 493 : 626 - 646
  • [44] Deep learning-based semantic segmentation of remote sensing images: a review
    Lv, Jinna
    Shen, Qi
    Lv, Mingzheng
    Li, Yiran
    Shi, Lei
    Zhang, Peiying
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2023, 11
  • [45] DEEP LEARNING FOR SEMANTIC SEGMENTATION OF UAV VIDEOS
    Wang, Yiwen
    Lyn, Ye
    Cao, Yanpeng
    Yang, Michael Ying
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2459 - 2462
  • [46] Deep semantic segmentation for visual understanding on construction sites
    Wang, Zifeng
    Zhang, Yuyang
    Mosalam, Khalid M.
    Gao, Yuqing
    Huang, Shao-Lun
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2022, 37 (02) : 145 - 162
  • [47] Review the state-of-the-art technologies of semantic segmentation based on deep learning
    Mo, Yujian
    Wu, Yan
    Yang, Xinneng
    Liu, Feilin
    Liao, Yujun
    NEUROCOMPUTING, 2022, 493 : 626 - 646
  • [48] Deep Dual Learning for Semantic Image Segmentation
    Luo, Ping
    Wang, Guangrun
    Lin, Liang
    Wang, Xiaogang
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2737 - 2745
  • [49] SEMANTIC SEGMENTATION OF TEXT USING DEEP LEARNING
    Lattisi, Tiziano
    Farina, Davide
    Ronchetti, Marco
    COMPUTING AND INFORMATICS, 2022, 41 (01) : 78 - 97
  • [50] A Brief Survey on Semantic Segmentation with Deep Learning
    Hao, Shijie
    Zhou, Yuan
    Guo, Yanrong
    NEUROCOMPUTING, 2020, 406 : 302 - 321