Visual SLAM Integration With Semantic Segmentation and Deep Learning: A Review

被引:28
|
作者
Pu, Huayan [1 ]
Luo, Jun [1 ]
Wang, Gang [1 ]
Huang, Tao [1 ]
Liu, Hongliang [1 ]
Luo, Jun [1 ]
机构
[1] Chongqing Univ, Coll Mech & Vehicle Engn, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Deep learning; robots; semantic segmentation; simultaneous localization and mapping (SLAM); INERTIAL ODOMETRY; SIMULTANEOUS LOCALIZATION; K-MEANS; TRACKING; ROBUST; RECONSTRUCTION; VERSATILE; VISION; ONLINE;
D O I
10.1109/JSEN.2023.3306371
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Simultaneous localization and mapping (SLAM) technology is essential for robots to navigate unfamiliar environments. It utilizes the sensors the robot carries to answer the question "Where am I?" Of the available sensors, cameras are commonly used. Compared to other sensors like light detection and ranging (LiDARs), the method based on cameras, known as visual SLAM, has been extensively explored by researchers due to the affordability and rich image data cameras provide. Although conventional visual SLAM algorithms have been able to accurately build a map in static environments, dynamic environments present a significant challenge for visual SLAM in practical robotics scenarios. While efforts have been made to address this issue, such as adding semantic segmentation to conventional algorithms, a comprehensive literature review is still lacking. This article discusses the challenges and approaches of visual SLAM with a focus on dynamic objects and their impact on feature extraction and mapping accuracy. First, two classical approaches of conventional visual SLAM are reviewed; then, this article explores the application of deep learning in the front-end and back-end of visual SLAM. Next, visual SLAM in dynamic environments is analyzed and summarized, and insights into future developments are elaborated upon. This article provides effective inspiration for researchers on how to combine deep learning and semantic segmentation with visual SLAM to promote its development.
引用
收藏
页码:22119 / 22138
页数:20
相关论文
共 50 条
  • [1] DMS-SLAM: semantic visual SLAM based on deep mask segmentation in dynamic environments
    Gao, Shuyuan
    Zhang, Minhui
    Gao, Xicheng
    Zhang, Dawei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (04)
  • [2] Deep Learning for Visual Segmentation: A Review
    Sun, Jiaxing
    Li, Yujie
    Lu, Huimin
    Kamiya, Tohru
    Serikawa, Seiichi
    2020 IEEE 44TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2020), 2020, : 1256 - 1260
  • [3] Deep Learning for Visual SLAM in Transportation Robotics: A review
    Duan, Chao
    Junginger, Steffen
    Huang, Jiahao
    Jin, Kairong
    Thurow, Kerstin
    TRANSPORTATION SAFETY AND ENVIRONMENT, 2019, 1 (03) : 177 - 184
  • [4] Deep Learning for Visual SLAM in Transportation Robotics: A review
    Chao Duan
    Steffen Junginger
    Jiahao Huang
    Kairong Jin
    Kerstin Thurow
    Transportation Safety and Environment, 2019, 1 (03) : 177 - 184
  • [5] Visual SLAM System Design based on Semantic Segmentation
    Wang, Jiwu
    Liu, Yafan
    ICAROB 2019: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS, 2019, : 316 - 319
  • [6] Review of Image Semantic Segmentation Based on Deep Learning
    Tian X.
    Wang L.
    Ding Q.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (02): : 440 - 468
  • [7] Multimodal Deep Learning in Semantic Image Segmentation: A Review
    Raman, Vishal
    Kumari, Madhu
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTERNET OF THINGS (CCIOT 2018), 2018, : 7 - 11
  • [8] Review of Semantic Segmentation by Using Deep learning methods
    Rajeswari, B.
    Ram, J. Mani
    Kumar, D. V. T. Praveen
    Harshith, K. L. V. V.
    2024 INTERNATIONAL CONFERENCE ON SOCIAL AND SUSTAINABLE INNOVATIONS IN TECHNOLOGY AND ENGINEERING, SASI-ITE 2024, 2024, : 272 - 277
  • [9] Review of Deep Learning-Based Semantic Segmentation
    Zhang Xiangfu
    Jian, Liu
    Shi Zhangsong
    Wu Zhonghong
    Zhi, Wang
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (15)
  • [10] SUPERVISED AND UNSUPERVISED DEEP LEARNING APPLICATIONS FOR VISUAL SLAM: A REVIEW
    Ukaegbu, Uchechi Faithful
    Tartibu, Lagouge Kwanda
    Lim, C. W.
    PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 3, 2022,