Sensitivity of surface soil moisture retrieval to satellite-derived vegetation descriptors over wheat fields in the Kairouan plain

被引:0
|
作者
Ayari, Emna [1 ,2 ]
Zribi, Mehrez [1 ]
Lili-Chabaane, Zohra [2 ]
Kassouk, Zeineb [2 ]
Jarlan, Lionel [1 ]
Rodriguez-Fernandez, Nemesio [1 ]
Baghdadi, Nicolas [3 ]
机构
[1] Univ Toulouse, CESBIO, CNES CNRS INRAE IRD UPS, 18 Av Edouard Belin,Bpi 2801, F-31401 Toulouse 9, France
[2] Carthage Univ, Natl Agron Inst Tunisia, LR17AGR01 InteGRatEd Management Nat Resources Rem, Tunis, Tunisia
[3] Univ Montpellier, TETIS, AgroParisTech, CIRAD,CNRS,INRAE, Montpellier, France
关键词
Surface soil moisture; wheat; radar; Sentinel-1; normalized difference vegetation index; semi-arid; INTEGRAL-EQUATION MODEL; X-BAND SAR; SYNTHETIC-APERTURE RADAR; C-BAND; TIME-SERIES; TERRASAR-X; ROUGHNESS-PARAMETER; BACKSCATTERING; PRECIPITATION; CALIBRATION;
D O I
10.1080/22797254.2023.2260555
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Soil moisture estimation is a key component in hydrological processes and irrigation amounts' estimation. The synergetic use of optical and radar data has been proven to retrieve the surface soil moisture at a field scale using the Water Cloud Model (WCM). In this work, we evaluate the impact of staellite-derived vegetation descriptors to estimate the surface soil moisture. Therefore, we used the Sentinel-1 data to test the polarization ratio ( sigma V H 0 / sigma V V 0 ) and the normalized polarization ratio (IN) and the frequently used optical Normalized Difference vegetation Index (NDVI) as vegetation descriptors. Synchronous with Sentinel-1 acquisitions, in situ soil moisture were collected over wheat fields in the Kairouan plain in the center of Tunisia. To avoid the bare soil roughness effect and the radar signal saturation in dense vegetation context, we considered the data where the NDVI values vary between 0.25 and 0.7. The soil moisture inversion using the WCM and NDVI as a vegetation descriptor was characterized by an RMSE value of 5.6 vol.%. A relatively close performance was obtained using IN and ( sigma V H 0 / sigma V V 0 ) with RMSE under 7. 5 vol.%. The results revealed the consistency of the radar-derived data in describing the vegetation for the retrieval of soil moisture.
引用
收藏
页数:13
相关论文
共 46 条
  • [31] Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area
    Albergel, Clement
    Munier, Simon
    Leroux, Delphine Jennifer
    Dewaele, Helene
    Fairbairn, David
    Barbu, Alina Lavinia
    Gelati, Emiliano
    Dorigo, Wouter
    Faroux, Stephanie
    Meurey, Catherine
    Le Moigne, Patrick
    Decharme, Bertrand
    Mahfouf, Jean-Francois
    Calvet, Jean-Christophe
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (10) : 3889 - 3912
  • [32] Surface soil moisture estimation from SAR data over wheat fields during the ADAM project
    Prevot, L
    Voicu, P
    Vintila, R
    Poenaru, V
    DeBoissezon, H
    Pourthie, N
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 2885 - +
  • [33] Impact of Accuracy, Spatial Availability, and Revisit Time of Satellite-Derived Surface Soil Moisture in a Multiscale Ensemble Data Assimilation System
    Pan, Ming
    Wood, Eric F.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2010, 3 (01) : 49 - 56
  • [34] ALOS-2 and Sentinel-1 use for retrieving soil moisture over cereal fields in semi-arid area: The Kairouan plain - central Tunisia
    Ayari, Emna
    Kassouk, Zeineb
    Lili-Chabaane, Zohra
    Baghdadi, Nicolas
    Bousbih, Safa
    Zribi, Mehrez
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XXIII, 2021, 11856
  • [35] Integration of Satellite-Derived and Ground-Based Soil Moisture Observations for a Precipitation Product over the Upper Heihe River Basin, China
    Zhang, Ying
    Hou, Jinliang
    Huang, Chunlin
    REMOTE SENSING, 2022, 14 (21)
  • [36] Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF's Integrated Forecast System and the TMI soil moisture data set
    Drusch, M.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D3)
  • [37] EMPIRICAL MODEL FOR SURFACE SOIL MOISTURE ESTIMATION OVER WHEAT FIELDS USING C-BAND POLARIMETRIC SAR
    Beauregard, Vincent
    Goita, Kalifa
    Magagi, Ramata
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1695 - 1698
  • [38] VEGETATION OPTICAL DEPTH AND SOIL MOISTURE RETRIEVAL USING L-BAND RADIOMETRY OVER THE ENTIRE GROWING SEASON OF A WINTER WHEAT STAND
    Meyer, Thomas
    Jonard, Francois
    Weihermueller, Lutz
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5525 - 5528
  • [39] Trapezoid-based surface soil moisture retrieval using a pixel-to-pixel scheme: A preliminary result over the North China Plain
    Leng, Pei
    Li, Zhao-Liang
    Liao, Qian-Yu
    Ma, Jianwei
    Sun, Yayong
    Song, Qian
    Zhang, Xia
    Shang, Guo-Fei
    JOURNAL OF HYDROLOGY, 2022, 613
  • [40] SURFACE SOIL MOISTURE RETRIEVAL OVER IRRIGATED WHEAT CROPS IN SEMI-ARID AREAS USING SENTINEL-1 DATA
    Ouaadi, Nadia
    Jarlan, Lionel
    Ezzahar, Jamal
    Zribi, Mehrez
    Khabba, Said
    Bouras, Elhoussaine
    Frison, Pierre-Louis
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 212 - 215