Temperature sensing of the brain enabled by directly inscribed Bragg gratings in CYTOP polymer optical fiber implants

被引:3
|
作者
Sui, Kunyang [1 ,3 ]
Ioannou, Andreas [2 ]
Meneghetti, Marcello [1 ,3 ]
Li, Guanghui [3 ]
Berg, Rune W. [3 ]
Kalli, Kyriacos [2 ]
Markos, Christos [1 ]
机构
[1] Tech Univ Denmark, Dept Elect & Photon Engn, DK-2800 Lyngby, Denmark
[2] Cyprus Univ Technol, Photon & Opt Sensors Res Lab PhOSLab, CY-3036 Limassol, Cyprus
[3] Univ Copenhagen, Dept Neurosci, DK-2200 Copenhagen, Denmark
关键词
Fiber Bragg gratings; Brain temperature sensor; Polymer optical fibers; Flexible neural probe; FABRICATION; SENSORS;
D O I
10.1016/j.yofte.2023.103478
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Brain temperature is a vital physiological parameter that has a great effect on metabolic processes, enzymatic activity, neurotransmitter function, blood flow regulation, neuroprotection, and cognitive performance. In this framework, the development of accurate and reliable brain temperature measurement tools is crucial in brainrelated treatment and research, such as neurosurgery, therapeutic hypothermia, and the understanding of brain function and pathologies. Here, we developed the first large-core flexible low optical loss CYTOP polymer optical fiber (POF)-based brain temperature probe operating in the telecommunication spectral range. The temperature measurements were achieved by detecting the reflected spectrum from a fiber Bragg grating (FBG) directly inscribed at the tip of the POF using femtosecond pulses. A fluorinated ethylene propylene (FEP) tube was thermally drawn and used as a sleeve around the FBG structure to eliminate the cross-sensitivity with humidity and microstrain perturbations. The assembled POF implant has a sensitivity of 14.3 pm/degrees C. The local temperature of the cerebral cortex, corpus callosum, and striatum in a rat brain was measured in vivo. The results indicate that the deep brain regions have higher temperature than the top cortical ones with a relatively linear relationship between the brain structure depth and its temperature. In addition, the rectal body core temperature was detected in parallel with the brain temperature measurement to further validate the developed device. We believe that the presented CYTOP POF-based implantable temperature probe opens the way towards the development of flexible and stable tools for accurate brain temperature recording where large-core fiber-based neural devices are required.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Bragg Gratings and Fabry-Perot Cavities in Low-Loss Multimode CYTOP Polymer Fiber
    Theodosiou, Antreas
    Hu, Xuehao
    Caucheteur, Christophe
    Kalli, Kyriacos
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2018, 30 (09) : 857 - 860
  • [22] Plane-by-Plane Femtosecond Laser Inscription Method for Single-Peak Bragg Gratings in Multimode CYTOP Polymer Optical Fiber
    Theodosiou, Antreas
    Lacraz, Amedee
    Stassis, Andreas
    Koutsides, Charalambos
    Komodromos, Michael
    Kalli, Kyriacos
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2017, 35 (24) : 5404 - 5410
  • [23] Optical Sensing Using Fiber Bragg Gratings: Fundamentals and Applications
    Alvarez-Botero, German
    Baron, Fabian E.
    Camilo Cano, C.
    Sosa, Oscar
    Varon, Margarita
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2017, 20 (02) : 33 - 38
  • [24] FIBer Bragg gratings for Optical Sensing (FIBOS) for an aerospace applicationd
    Heredero, R. L.
    Frovel, M.
    Laguna, H.
    Anderson, A.
    Garranzo, D.
    Belenguer-Davila, T.
    FOURTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS, 2010, 7653
  • [25] Strain sensing characterization of polymer optical fibre Bragg gratings
    Liu, HY
    Liu, HB
    Peng, GD
    17TH INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS, PTS 1 AND 2, 2005, 5855 : 663 - 666
  • [26] UV-laser-inscribed fiber Bragg gratings in photonic crystal fibers and sensing applications
    Wang, Yiping
    Bartelt, Hartmut
    Ecke, Wolfgang
    Willsch, Reinhardt
    Kobelke, Jens
    2011 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: OPTOELECTRONIC MEASUREMENT TECHNOLOGY AND SYSTEMS, 2011, 8201
  • [27] Review of Femtosecond-Laser-Inscribed Fiber Bragg Gratings: Fabrication Technologies and Sensing Applications
    Jun He
    Baijie Xu
    Xizhen Xu
    Changrui Liao
    Yiping Wang
    Photonic Sensors, 2021, 11 : 203 - 226
  • [28] Review of Femtosecond-Laser-Inscribed Fiber Bragg Gratings: Fabrication Technologies and Sensing Applications
    He, Jun
    Xu, Baijie
    Xu, Xizhen
    Liao, Changrui
    Wang, Yiping
    PHOTONIC SENSORS, 2021, 11 (02) : 203 - 226
  • [29] Research of temperature hysteresis rule on fiber Bragg gratings sensing
    Guo, Tuan
    Qiao, Xue-Guang
    Jia, Zhen-An
    Sun, An
    Chen, Chang-Yong
    2003, Board of Optronics Lasers (14):
  • [30] Multipoint High Temperature Sensing with Regenerated Fiber Bragg Gratings
    Dutz, Franz J.
    Lindner, Markus
    Heinrich, Andreas
    Seydel, Carl G.
    Bosselmann, Thomas
    Koch, Alexander W.
    Roths, Johannes
    FIBER OPTIC SENSORS AND APPLICATIONS XV, 2018, 10654