Modeling Markov sources and hidden Markov models by P systems

被引:1
|
作者
Sempere, Jose M. [1 ]
机构
[1] Univ Politecn Valencia, Valencian Res Inst Artificial Intelligence VRAIN, Valencia, Spain
关键词
Transition P systems; Evolution and target rules; Stochastic rules; Markov sources; Hidden Markov models;
D O I
10.1007/s41965-023-00129-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work, we provide several algorithms to obtain stochastic transition P systems from Markov sources and Hidden Markov Models. In both cases, stochastic P systems are obtained that use probabilistic evolution, send-in and send-out rules. The use of objects and the structure of membranes correspond to the states of the Markov sources and the Hidden Markov Models. This proposal is especially useful to use P systems to model complex systems with a stochastic behavior.
引用
收藏
页码:161 / 169
页数:9
相关论文
共 50 条
  • [21] Modeling sequencing errors by combining Hidden Markov models
    Lottaz, C.
    Iseli, C.
    Jongeneel, C. V.
    Bucher, P.
    BIOINFORMATICS, 2003, 19 : II103 - II112
  • [22] Disease Progression Modeling Using Hidden Markov Models
    Sukkar, Rafid
    Katz, Elyse
    Zhang, Yanwei
    Raunig, David
    Wyman, Bradley T.
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 2845 - 2848
  • [23] Internet traffic modeling by means of Hidden Markov Models
    Dainotti, Alberto
    Pescape, Antonio
    Rossi, Pierluigi Salvo
    Palmieri, Francesco
    Ventre, Giorgio
    COMPUTER NETWORKS, 2008, 52 (14) : 2645 - 2662
  • [24] Linear Models with Hidden Markov Sources via Replica Method
    Truong, Lan, V
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 396 - 401
  • [25] COMPARATIVE ANALYSIS OF TRIANGULAR FUZZY HIDDEN MARKOV MODELS AND TRADITIONAL HIDDEN MARKOV MODELS
    Vyshnavi, M.
    Muthukumar, M.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2025, 92 (02) : 171 - 189
  • [26] Evolutionary hidden Markov modeling for dynamic agent systems
    Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
    不详
    Kongzhi yu Juece Control Decis, 2006, 2 (189-192):
  • [27] Hidden Markov Modeling with HMMTeacher
    Fuentes-Beals, Camilo
    Valdes-Jimenez, Alejandro
    Riadi, Gonzalo
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (02)
  • [28] Hamptonese and hidden Markov models
    Stamp, M
    Le, E
    NEW DIRECTIONS AND APPLICATIONS IN CONTROL THEORY, 2005, 321 : 367 - 378
  • [29] Hidden Markov models for bioinformatics
    Sisson, S
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2004, 167 : 194 - 195
  • [30] Ergodicity of hidden Markov models
    Di Masi, GB
    Stettner, L
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2005, 17 (04) : 269 - 296