On study the existence and uniqueness of the solution of the Caputo-Fabrizio coupled system of nonlocal fractional q-integro differential equations

被引:5
|
作者
Ali, Khalid K. [1 ]
Raslan, K. R. [1 ]
Ibrahim, Amira Abd-Elall [2 ]
Mohamed, Mohamed S. [3 ]
机构
[1] Al Azhar Univ, Fac Sci, Dept Math, Cairo, Egypt
[2] October High Inst Engn & Technol, 6th Of October, Egypt
[3] Taif Univ, Coll Sci, Dept Math, POB 1109921944, Taif, Saudi Arabia
关键词
Caputo-Fabrizio coupled system; existence and uniqueness; nonlocal fractional q-integro differential equations; COMMUTATORS; OPERATORS;
D O I
10.1002/mma.9246
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will use the definitions of the Caputo-Fabrizio fractional derivative and the Riemann-Liouville fractional q-integral to look into the existence, uniqueness, and continuous dependence of solutions for a coupled system of fractional q-integro-differential equations. We provide an overview of the finite-trapezoidal method. Finally, we present some numerical examples to demonstrate the method's effectiveness.
引用
收藏
页码:13226 / 13242
页数:17
相关论文
共 50 条
  • [21] A Numerical Scheme of a Fractional Coupled System of Volterra Integro -Differential Equations with the Caputo Fabrizio Fractional Derivative
    Lahoucine, Tadoummant
    Rachid, Echarghaoui
    CONTEMPORARY MATHEMATICS, 2024, 5 (03): : 3740 - 3761
  • [22] Existence and Uniqueness of Solution for Caputo-Fabrizio Fractional Bratu-Type Initial Value Problem
    Khalouta, A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2023, 13 (01): : 96 - 112
  • [23] Existence and Stability Results for Piecewise Caputo-Fabrizio Fractional Differential Equations with Mixed Delays
    Kattan, Doha A.
    Hammad, Hasanen A.
    FRACTAL AND FRACTIONAL, 2023, 7 (09)
  • [24] Application of some new contractions for existence and uniqueness of differential equations involving Caputo-Fabrizio derivative
    Afshari, Hojjat
    Hosseinpour, Hossein
    Marasi, H. R.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [25] A FINITE DIFFERENCE SCHEME FOR CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIAL EQUATIONS
    Guo, Xu
    Li, Yutian
    Zeng, Tieyong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (02) : 195 - 211
  • [26] On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type
    Ali, Khalid K.
    Raslan, K. R.
    Ibrahim, Amira Abd-Elall
    Mohamed, Mohamed S.
    AIMS MATHEMATICS, 2023, 8 (08): : 18206 - 18222
  • [27] Caputo-Fabrizio fractional differential equations with non instantaneous impulses
    Abbas, Said
    Benchohra, Mouffak
    Nieto, Juan J.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) : 131 - 144
  • [28] The Existence and Uniqueness of Solution for Fractional Newel-Whitehead-Segel Equation within Caputo-Fabrizio Fractional Operator
    Khalouta, Ali
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2021, 16 (02):
  • [29] On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation
    Baleanu, Dumitru
    Rezapour, Shahram
    Saberpour, Zohreh
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [30] Hyers-Ulam Stability and Existence of Solutions for Differential Equations with Caputo-Fabrizio Fractional Derivative
    Liu, Kui
    Feckan, Michal
    O'Regan, D.
    Wang, JinRong
    MATHEMATICS, 2019, 7 (04):