Parameter estimation for models of chemical reaction networks from experimental data of reaction rates

被引:3
|
作者
Gasparyan, Manvel [1 ,2 ]
Van Messem, Arnout [1 ,3 ,4 ]
Rao, Shodhan [1 ,2 ]
机构
[1] Ghent Univ Global Campus, Ctr Biosyst & Biotech Data Sci, Incheon, South Korea
[2] Univ Ghent, Dept Data Anal & Math Modelling, Ghent, Belgium
[3] Univ Ghent, Dept Appl Math Comp Sci & Stat, Ghent, Belgium
[4] Univ Liege, Dept Math, Liege, Belgium
关键词
Systems biology; bottom-up modelling approach; system identification; Bezier curves; least squares method; IDENTIFIABILITY; SYSTEMS; IDENTIFICATION; REDUCTION;
D O I
10.1080/00207179.2021.1998636
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For the purpose of precise mathematical modelling of chemical reaction networks, useful techniques for estimating their parameters from experimental data are necessary. In this manuscript, we propose a new parameter estimation method for enzymatic chemical reaction networks from time-series experimental data of reaction rates. The main idea is based on retrieving time-series data of the species' concentrations from the available experimental data of reaction rates by making use of parametric Bezier curves. The least-squares method is applied to these retrieved data in order to determine the best-fitting values of the parameters in the corresponding mathematical model. Subsequently, we demonstrate the applicability of our parameter estimation method on three examples of enzymatic chemical reaction networks, including a model of ryanodine receptor adaptation and a model of protein kinase cascades. We also address the issue of identifiability of chemical reaction network models from reaction rates.
引用
收藏
页码:392 / 407
页数:16
相关论文
共 50 条
  • [31] Chemical reaction rate parameter estimation by MAP particle filter algorithm
    Kashiwaya, Shigeru
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 4489 - 4496
  • [32] Moment-Based Parameter Estimation for Stochastic Reaction Networks in Equilibrium
    Backenkohler, Michael
    Bortolussi, Luca
    Wolf, Verena
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2018, 15 (04) : 1180 - 1192
  • [33] Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
    Liao, Shuohao
    Vejchodsky, Tomas
    Erban, Radek
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2015, 12 (108)
  • [34] Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
    Froehlich, Fabian
    Kaltenbacher, Barbara
    Theis, Fabian J.
    Hasenauer, Jan
    PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (01)
  • [35] SINDy-CRN: Sparse Identification of Chemical Reaction Networks from Data
    Bhatt, Nirav
    Jayawardhana, Bayu
    Plaza, Santiago Sanchez-Escalonilla
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 3512 - 3518
  • [36] PRECISE PARAMETER ESTIMATION IN REACTION MODELLING - SENSITIVITY IN CHOOSING EXPERIMENTAL CONDITIONS
    MEZAKI, R
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1969, 47 (02): : 192 - &
  • [37] Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks
    Rathinam, Muruhan
    Sheppard, Patrick W.
    Khammash, Mustafa
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (03):
  • [38] Natural Parameter Conditions for Singular Perturbations of Chemical and Biochemical Reaction Networks
    Justin Eilertsen
    Santiago Schnell
    Sebastian Walcher
    Bulletin of Mathematical Biology, 2023, 85
  • [39] Natural parameter conditions for singular perturbations of chemical and biochemical reaction networks
    Eilertsen, Justin
    Schnell, Santiago
    Walcher, Sebastian
    arXiv, 2022,
  • [40] Natural Parameter Conditions for Singular Perturbations of Chemical and Biochemical Reaction Networks
    Eilertsen, Justin
    Schnell, Santiago
    Walcher, Sebastian
    BULLETIN OF MATHEMATICAL BIOLOGY, 2023, 85 (06)