Parameter estimation for models of chemical reaction networks from experimental data of reaction rates

被引:3
|
作者
Gasparyan, Manvel [1 ,2 ]
Van Messem, Arnout [1 ,3 ,4 ]
Rao, Shodhan [1 ,2 ]
机构
[1] Ghent Univ Global Campus, Ctr Biosyst & Biotech Data Sci, Incheon, South Korea
[2] Univ Ghent, Dept Data Anal & Math Modelling, Ghent, Belgium
[3] Univ Ghent, Dept Appl Math Comp Sci & Stat, Ghent, Belgium
[4] Univ Liege, Dept Math, Liege, Belgium
关键词
Systems biology; bottom-up modelling approach; system identification; Bezier curves; least squares method; IDENTIFIABILITY; SYSTEMS; IDENTIFICATION; REDUCTION;
D O I
10.1080/00207179.2021.1998636
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For the purpose of precise mathematical modelling of chemical reaction networks, useful techniques for estimating their parameters from experimental data are necessary. In this manuscript, we propose a new parameter estimation method for enzymatic chemical reaction networks from time-series experimental data of reaction rates. The main idea is based on retrieving time-series data of the species' concentrations from the available experimental data of reaction rates by making use of parametric Bezier curves. The least-squares method is applied to these retrieved data in order to determine the best-fitting values of the parameters in the corresponding mathematical model. Subsequently, we demonstrate the applicability of our parameter estimation method on three examples of enzymatic chemical reaction networks, including a model of ryanodine receptor adaptation and a model of protein kinase cascades. We also address the issue of identifiability of chemical reaction network models from reaction rates.
引用
收藏
页码:392 / 407
页数:16
相关论文
共 50 条
  • [1] Parameter Estimation for Kinetic Models of Chemical Reaction Networks from Partial Experimental Data of Species' Concentrations
    Gasparyan, Manvel
    Rao, Shodhan
    BIOENGINEERING-BASEL, 2023, 10 (09):
  • [2] Parameter Estimation for Stochastic Models of Chemical Reaction Networks
    Wolf, Verena
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2011, (67):
  • [3] PARAMETER ESTIMATION FROM INDUSTRIAL DATA IN CHEMICAL-REACTION ENGINEERING
    HOFMANN, H
    CHIMIA, 1975, 29 (04) : 159 - 165
  • [4] UNBIASED ESTIMATION OF PARAMETER SENSITIVITIES FOR STOCHASTIC CHEMICAL REACTION NETWORKS
    Gupta, Ankit
    Khammash, Mustafa
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06): : A2598 - A2620
  • [5] Parameter Estimation for Stochastic Hybrid Models of Biochemical Reaction Networks
    Mikeev, Linar
    Wolf, Verena
    HSCC 12: PROCEEDINGS OF THE 15TH ACM INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2012, : 155 - 165
  • [6] Parameter estimation of kinetic rates in stochastic reaction networks by the EM method
    Horvath, Andras
    Manini, Daniele
    BMEI 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOL 1, 2008, : 713 - 717
  • [7] The effects of different experimental designs on parameter estimation in the kinetics of a reversible chemical reaction
    Xu, QS
    Liang, YZ
    Fang, KT
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 52 (02) : 155 - 166
  • [8] Learning Chemical Reaction Networks from Trajectory Data
    Zhang, Wei
    Klus, Stefan
    Conrad, Tim
    Schuette, Christof
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (04): : 2000 - 2046
  • [9] Parameter estimation of distributed activation energy models via chemical reaction neural network
    Zhai, Chunjie
    Wang, Xinmeng
    Zhang, Siyu
    Cao, Zhaolou
    COMBUSTION AND FLAME, 2024, 270
  • [10] Stochastic simulation and parameter estimation of enzyme reaction models
    Zhang, XY
    De Cock, K
    Bugallo, WE
    Djuric, PM
    PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, : 518 - 521