Impact response of composite energy absorbers based on foam-filled metallic and polymeric auxetic frames

被引:13
|
作者
Chen, Chuanqing [1 ,2 ]
Airoldi, Alessandro [2 ]
Caporale, Antonio Maria [2 ]
Sala, Giuseppe [2 ]
Yin, Xiaochun [3 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Nanjing 210093, Jiangsu, Peoples R China
[2] Politecn Milan, Dept Aerosp Sci & Technol, Milan, Italy
[3] Nanjing Univ Sci & Technol, Sch Sci, Dept Mech & Engn Sci, Nanjing 210094, Peoples R China
关键词
Hexachiral auxetic; Foam; -filled; Energy absorption; Localized impact; NEGATIVE POISSONS RATIO; INDENTATION RESILIENCE; MORPHING STRUCTURES; CHIRAL TOPOLOGIES; BLAST RESPONSE; HONEYCOMBS; POLYETHYLENE; PANELS; MODEL;
D O I
10.1016/j.compstruct.2024.117916
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, an innovative concept is proposed, based on the hexachiral auxetic frames filled with foams with enhanced energy absorption capabilities. Numerical assessments of the composite foam-filled auxetic absorbers, of pure foam blocks and unfilled auxetic frames for metallic and polymeric material combinations were accomplished considering a case of localized impact. The energy absorbed by the composite absorbers are found superior to the sum of the energies absorbed by constituent elements tested separately with clear advantages also at the level of the specific energy absorbed per unit mass. The interactions between the two constituents are analyzed and discussed. An experiment considering a 3D-printed polymeric hexachiral frame filled with opencell soft polyurethane foam under localized impact is conducted to validate the numerical approach. Eventually, a parametric sensitivity study is conducted numerically to illustrate the effects of geometrical parameters on the energy absorption capacity. Overall, the results confirm the potential and the great design flexibility of the concept, provides the guidelines to design advanced energy absorbing system, underlies the importance of the combination between the frame and foam properties and the effect of the main geometrical parameters on the performance.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Energy absorption analysis of a novel foam-filled corrugated composite tube under axial and oblique loadings
    Mahbod, Mahshid
    Asgari, Masoud
    THIN-WALLED STRUCTURES, 2018, 129 : 58 - 73
  • [32] A double-cell foam-filled composite block for efficient energy absorption under axial compression
    Taher, Siavash T.
    Zahari, Rizal
    Ataollahi, Simin
    Mustapha, Faizal
    Basri, ShahNor
    COMPOSITE STRUCTURES, 2009, 89 (03) : 399 - 407
  • [33] Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs
    Zhou, Hongyuan
    Jia, Kuncheng
    Wang, Xiaojuan
    Xiong, Ming-Xiang
    Wang, Yonghui
    THIN-WALLED STRUCTURES, 2020, 154
  • [34] Compressive characteristics of foam-filled composite egg-box sandwich panels as energy absorbing structures
    Yoo, S. H.
    Chang, S. H.
    Sutcliffe, M. P. F.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2010, 41 (03) : 427 - 434
  • [35] Energy absorption of foam-filled multi-cell composite panels under quasi static compression
    Chen, Jiye
    Fang, Hai
    Liu, Weiqing
    Zhu, Lu
    Zhuang, Yong
    Wang, Jian
    Han, Juan
    COMPOSITES PART B-ENGINEERING, 2018, 153 : 295 - 305
  • [36] Investigation of the energy absorption capacity of foam-filled 3D-printed glass fiber reinforced thermoplastic auxetic honeycomb structures
    Farrokhabadi, Amin
    Veisi, Hossein
    Gharehbaghi, Hussain
    Montesano, John
    Behravesh, Amir Hossein
    Hedayati, Seyyed Kaveh
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2023, 30 (04) : 758 - 769
  • [37] Experimental investigation on energy absorption of auxetic foam-filled thin-walled square tubes under quasi-static loading
    Mohsenizadeh, S.
    Alipour, R.
    Nejad, A. Farokhi
    Rad, M. Shokri
    Ahmad, Z.
    2ND INTERNATIONAL MATERIALS, INDUSTRIAL, AND MANUFACTURING ENGINEERING CONFERENCE, MIMEC2015, 2015, 2 : 331 - 336
  • [38] Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading
    Ahmad, Z.
    Thambiratnam, D. P.
    COMPUTERS & STRUCTURES, 2009, 87 (3-4) : 186 - 197
  • [39] Dynamic response of multilayer sandwich beams with foam-filled trapezoidal corrugated and foam cores under low-velocity impact
    Sun, Hao
    Yuan, Hui
    Zhang, Jing
    Zhang, Jianxun
    Du, Jinlong
    Huang, Wei
    ENGINEERING STRUCTURES, 2023, 286
  • [40] Deformation Behavior and Crashworthiness of Functionally Graded Metallic Foam-Filled Tubes Under Drop-Weight Impact Testing
    Salehi, M.
    Mirbagheri, S. M. H.
    Ramiani, A. Jafari
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2020, 51 (10): : 5120 - 5138