SentiImgBank: A Large Scale Visual Repository for Image Sentiment Analysis

被引:0
|
作者
Zhang, Yazhou [1 ,2 ,3 ]
He, Yu [3 ]
Chen, Rui [3 ]
Rong, Lu [4 ]
机构
[1] China Mobile Commun Grp Tianjin Co Ltd, Artificial Intelligence Lab, Tianjin 300456, Peoples R China
[2] Chongqing Univ, Minist Educ, Key Lab Dependable Serv Comp Cyber Phys Soc, Chongqing, Peoples R China
[3] Zhengzhou Univ Light Ind, Software Engn Coll, Zhengzhou 450001, Peoples R China
[4] Zhengzhou Univ Light Ind, Human Resources Off, Zhengzhou 450001, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Visual sentiment analysis; Emotion recognition; Opinion mining; Dataset;
D O I
10.1007/978-981-99-8552-4_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In contrast to existing methods which detect sentiment directly from low/high-level features, we construct a large-scale visual repository, namely SentiImgBank, with the aim of providing a bench-marking visual sentiment lexicon. More specially, the SentiImgBank consists of 24 categories, 5,487 adjective-noun pairs (ANPs), in total of 648,946 images that are collected from social media such as Twitter. In view that ANPs might express different sentiments in different contexts, i.e., contextuality, SentiImgBank annotates the discrete sentiment and emotion scores instead of directly defining the golden label. Hence, each image is associated with ten numerical scores, where three of them are sentiment scores, the remaining seven scores denote different emotions. To alleviate the manually annotation cost, a committee of 15 pre-trained language models based classifiers is proposed to automatically produce the sentiment and emotion scores. Finally, the strong baselines are proposed to evaluate the potential of SentiImgBank. We hope this study provides a publicly available resource for visual sentiment analysis. The full dataset will be publicly available for research (https://github.com/ anonymity2024/SentiImgBank).
引用
收藏
页码:494 / 505
页数:12
相关论文
共 50 条
  • [31] Honeycomb: Visual Analysis of Large Scale Social Networks
    van Ham, Frank
    Schulz, Hans-Joerg
    Dimicco, Joan M.
    HUMAN-COMPUTER INTERACTION - INTERACT 2009, PT II, PROCEEDINGS, 2009, 5727 : 429 - +
  • [32] Visual analysis of large-scale network anomalies
    Liao, Q.
    Shi, L.
    Wang, C.
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2013, 57 (3-4)
  • [33] Hemispatial neglect and visual search: A large scale analysis
    Behrmann, M
    Ebert, P
    Black, SE
    CORTEX, 2004, 40 (02) : 247 - 263
  • [34] AUTOMATED VISUAL ANALYSIS IN LARGE SCALE SENSOR NETWORKS
    Rasheed, Z.
    Cao, X.
    Shafique, K.
    Liu, H.
    Yu, L.
    Lee, M.
    Ramnath, K.
    Choe, T.
    Javed, O.
    Haering, N.
    2008 SECOND ACM/IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS, 2008, : 38 - 47
  • [35] Classification and indexing scheme of large-scale image repository for spatio-temporal landmark recognition
    Kim, Daehoon
    Rho, Seungmin
    Jun, Sanghoon
    Hwang, Eenjun
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2015, 22 (02) : 201 - 213
  • [36] Large scale and parallel sentiment analysis based on Label Propagation in Twitter Data
    Yang, Yibing
    Shafiq, M. Omair
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (IEEE TRUSTCOM) / 12TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (IEEE BIGDATASE), 2018, : 1791 - 1798
  • [37] Sentiment Interaction Distillation Network for Image Sentiment Analysis
    Wu, Lifang
    Deng, Sinuo
    Zhang, Heng
    Shi, Ge
    APPLIED SCIENCES-BASEL, 2022, 12 (07):
  • [38] Large Scale Sentiment Learning with Limited Labels
    Iosifidis, Vasileios
    Ntoutsi, Eirini
    KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 1823 - 1832
  • [39] A large scale group decision making system based on sentiment analysis cluster
    Trillo, Jose Ramon
    Herrera-Viedma, Enrique
    Morente-Molinera, Juan Antonio
    Cabrerizo, Francisco Javier
    INFORMATION FUSION, 2023, 91 : 633 - 643
  • [40] A Large-Scale Japanese Dataset for Aspect-based Sentiment Analysis
    Nakayama, Yuki
    Murakami, Koji
    Kumar, Gautam
    Bhingardive, Sudha
    Hardaway, Ikuko
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 7014 - 7021