Multiscale assessment of performance of limestone calcined clay cement (LC3) reinforced with virgin and recycled carbon fibers

被引:34
|
作者
Li, Huanyu [1 ,2 ]
Yang, Jian [1 ]
Wang, Lei [3 ]
Li, Lihui [1 ]
Xia, Yan [3 ]
Koberle, Thomas [2 ]
Dong, Wenkui [2 ]
Zhang, Ning [4 ]
Yang, Bin [5 ,6 ]
Mechtcherine, Viktor [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Shanghai Key Lab Digital Maintenance Bldg & Infras, Shanghai 200240, Peoples R China
[2] Tech Univ Dresden, Inst Construct Mat, D-01062 Dresden, Germany
[3] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[4] Leibniz Inst Ecol Urban & Reg Dev IOER, Weberplatz 1, D-01217 Dresden, Germany
[5] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[6] Nantong Fuyuan Carbon Fiber Recycling Co LTD FUY, Nantong, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon fiber; Recycled carbon fiber; Limestone calcined clay cement (LC 3 ); Fresh -state properties; Mechanical properties; Fiber -matrix bond; Autogenous shrinkage; AUTOGENOUS DEFORMATIONS; ENHANCED INTERACTION; EARLY-AGE; HYDRATION; BEHAVIOR; PASTES; WASTE; TEMPERATURE; PYROLYSIS; STRENGTH;
D O I
10.1016/j.conbuildmat.2023.133228
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The carbon fibers (CFs) recovered from end-of-life CFRP scraps via pyrolysis have recently aroused ascending interest due to their highly retained fiber strength and lowered carbon footprint. However, the utilization of recycled CFs (rCFs) within cementitious matrices, as well as the exploration of their interfacial interactions, remains notably limited. In this study, we have first time incorporated rCFs into sustainable Limestone Calcined Clay Cement (LC3) composite and comprehensively investigated the microstructural changes and physical characteristics of LC3-blended mixtures. The incorporation of LC3 results in a reduction in setting times and the flowability of fresh mortar, accompanied by a decrease in cumulative heat release. Analytical analysis indicated the generation of a substantial quantity of ettringite crystallites and highly polymerized C-A-S-H gel in LC3 mixtures, which benefited the enhancement of flexural strengths but increased the micropores in the matrices. Compromised compressive strengths, with reductions ranging from 5% to 46%, were observed upon the incorporation of LC3, aligning closely with the porosity findings. Measurements of autogenous shrinkage revealed an expansion tendency as LC3 proportions increased, likely attributed to bleeding and ettringite formation. A thorough investigation into the properties of CFs after undergoing thermal recycling was undertaken. A quantitative assessment of the bonding at the fiber-cement interface revealed a progressive reduction in bond strength for both virgin and recycled CFs, diminishing from 5.1 MPa and 2.5 MPa to 0.4 MPa and 0.5 MPa, respectively, along with the addition of LC3 content. Our findings have provided a comprehensive understanding of the hydration and microstructure evolution within LC3 blends, as well as the influence of CF additions on the matrices' properties.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Sustainable lightweight engineered cementitious composites using limestone calcined clay cement (LC3)
    Zhou, Yingwu
    Gong, Guoqiang
    Xi, Bin
    Guo, Menghuan
    Xing, Feng
    Chen, Cheng
    COMPOSITES PART B-ENGINEERING, 2022, 243
  • [42] Hydration Study of Limestone Calcined Clay Cement (LC3) Using Various Grades of Calcined Kaolinitic Clays
    Avet, F.
    Scrivener, K.
    CALCINED CLAYS FOR SUSTAINABLE CONCRETE, 2018, 16 : 35 - 40
  • [43] Exploring low-grade clay minerals diving into limestone calcined clay cement (LC3): Characterization - Hydration - Performance
    Blouch, Nosheen
    Rashid, Khuram
    Ju, Minkwan
    JOURNAL OF CLEANER PRODUCTION, 2023, 426
  • [44] Physico-chemical properties of Kenyan made calcined Clay -Limestone cement (LC3)
    Marangu, Joseph Mwiti
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2020, 12
  • [45] Studies on hybrid quaternary blended limestone calcined clay cement (LC3) for sustainable concrete
    Gowri, K.
    Rahim, A. Abdul
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2024, 9 (11)
  • [46] Influence of Calcined Clay Reactivity on the Mechanical Properties and Chloride Diffusion Resistance of Limestone Calcined Clay Cement (LC3) Concrete
    Nguyen, Quang Dieu
    Afroz, Sumaiya
    Castel, Arnaud
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (05)
  • [47] Hydration Kinetics Model of Limestone-Calcined Clay-Cement (LC3)System
    Wu, Lang
    Bao, Rong
    Dai, Jian
    Lei, Bin
    Cailiao Daobao/Materials Reports, 2024, 38 (15):
  • [48] Study of the proportion of calcined clay and limestone filer in the LC3 cement at different replacement levels
    Barbalho, Eneas de Andrade
    da Silva, Eugenia Fonseca
    da Silva Rego, Joao Henrique
    MATERIA-RIO DE JANEIRO, 2020, 25 (01):
  • [49] Research evolution of limestone calcined clay cement (LC3), a promising low-carbon binder - A comprehensive overview
    Manosa, Jofre Man
    Calderon, Alejandro
    Salgado-Pizarro, Rebeca
    Maldonado-Alameda, Alex
    Chimenos, Josep M.
    HELIYON, 2024, 10 (03)
  • [50] Stabilization/solidification of radioactive borate waste via low-carbon limestone calcined clay cement (LC3)
    Wang, Jian
    Shi, Daquan
    Xia, Yan
    Liu, Minghao
    Ma, Xiaobing
    Yu, Kunyang
    Zhao, Yading
    Zhang, Junyi
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (03):