The JET hybrid scenario in Deuterium, Tritium and Deuterium-Tritium

被引:29
|
作者
Hobirk, J. [1 ]
Challis, C. D. [2 ]
Kappatou, A. [1 ]
Lerche, E. [2 ,3 ]
Keeling, D. [2 ]
King, D. [2 ]
Aleiferis, S. [1 ,4 ]
Alessi, E. [5 ]
Angioni, C. [1 ]
Auriemma, F. [6 ,7 ]
Baruzzo, M. [8 ]
Belonohy, E. [2 ]
Bernardo, J. [9 ]
Boboc, A. [2 ]
Carvalho, I. S. [9 ,10 ]
Carvalho, P. [9 ]
Casson, F. J. [2 ]
Chomiczewska, A. [11 ]
Citrin, J. [12 ]
Coffey, I. H. [13 ]
Conway, N. J. [2 ]
Douai, D. [14 ]
Delabie, E. [15 ]
Eriksson, B. [16 ]
Eriksson, J. [16 ]
Ficker, O. [17 ]
Field, A. R. [2 ]
Fontana, M. [2 ,18 ]
Fontdecaba, J. M. [19 ]
Frassinetti, L. [20 ]
Frigione, D. [21 ]
Gallart, D. [22 ]
Garcia, J. [14 ]
Gelfusa, M. [21 ]
Ghani, Z. [2 ]
Giacomelli, L. [5 ]
Giovannozzi, E. [8 ]
Giroud, C. [2 ]
Goniche, M. [14 ]
Gromelski, W. [11 ]
Hacquin, S. [14 ]
Ham, C. [2 ]
Hawkes, N. C. [2 ]
Henriques, R. B. [2 ]
Hillesheim, J. C. [2 ]
Ho, A. [12 ]
Horvath, L. [2 ,23 ]
Ivanova-Stanik, I. [11 ]
Jacquet, P. [2 ]
Jaulmes, F. [17 ]
机构
[1] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[2] United Kingdom Atom Energy Author, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[3] Lab Plasma Phys LPP ERM KMS, B-1000 Brussels, Belgium
[4] NCSR Demokritos, Aghia Paraskevi 15310, Greece
[5] CNR, Inst Plasma Sci & Technol, Via R Cozzi 53, I-20125 Milan, Italy
[6] Univ Padua, Consorzio RFX, CNR, ENEA,INFN,Acciaierie Venete SpA, Corso Stati Uniti 4, I-35127 Padua, Italy
[7] Ist Sci & Tecnol Plasmi CNR, Corso Stati Uniti 4, I-35127 Padua, Italy
[8] ENEA CR Frascati, Dipto Fus & Tecnol Sicurezza Nucl, Via E Fermi 45, I-00044 Frascati, Roma, Italy
[9] Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal
[10] ITER Org, Route Vinon sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France
[11] Inst Plasma Phys & Laser Microfus IPPLM, 23 Hery St, PL-01497 Warsaw, Poland
[12] FOM Inst DIFFER, Eindhoven, Netherlands
[13] Queens Univ, Sch Math & Phys, Astrophys Res Ctr, Belfast BT71NN, North Ireland
[14] IRFM, CEA, F-13108 St Paul Les Durance, France
[15] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[16] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[17] Inst Plasma Phys CAS, Slovankou 1782-3, Prague 18200 8, Czech Republic
[18] Ecole Polytech Fed Lausanne EPFL, Swiss Plasma Ctr SPC, CH-1015 Lausanne, Switzerland
[19] CIEMAT, Lab Nacl Fus, Madrid, Spain
[20] KTH Royal Inst Technol, Fus Plasma Phys, SE-10044 Stockholm, Sweden
[21] Univ Roma Tor Vergata, Via Politecn 1, I-00133 Rome, Italy
[22] Barcelona Supercomp Ctr, Barcelona, Spain
[23] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[24] Aalto Univ, POB 14100, FIN-00076 Aalto, Finland
[25] European Commiss, Brussels, Belgium
[26] ICREA, Barcelona, Spain
[27] Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy
[28] Natl Inst Lasers Plasma & Radiat Phys, Magurele, Romania
[29] Consorzio CREATE, Via Claudio 21, Naples, Italy
[30] Univ Padua, Dipartimento Fis & Astron, Padua, Italy
[31] Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden
[32] Gen Atom, POB 85608, San Diego, CA 92186 USA
[33] Lithuanian Energy Inst, Breslaujos g 3, LT-44403 Kaunas, Lithuania
[34] Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium
基金
英国工程与自然科学研究理事会;
关键词
magnetic fusion; hybrid scenario; Tritium; D-T; isotope effects; INTERNAL TRANSPORT BARRIER; PERFORMANCE; DISCHARGES; PLASMAS;
D O I
10.1088/1741-4326/acde8d
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasma current, and toroidal magnetic field choices and succeeded in solving the heat load challenges arising from 37 MW of injected power in the ITER like wall environment, keeping the radiation in the edge and core controlled, avoiding MHD instabilities and reaching high neutron rates. The Deuterium hybrid plasmas have been re-run in Tritium and methods have been found to keep the radiation controlled but not at high fusion performance probably due to time constraints. For the first time this scenario has been run in Deuterium-Tritium (50:50). These plasmas were re-optimised to have a radiation-stable H-mode entry phase, good impurity control through edge Ti gradient screening and optimised performance with fusion power exceeding 10 MW for longer than three alpha particle slow down times, 8.3 MW averaged over 5 s and fusion energy of 45.8 MJ.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Fuelling of deuterium-tritium plasma by peripheral pellets in JET experiments
    Valovic, M.
    Aleiferis, S.
    Blatchford, P.
    Boboc, A.
    Brix, M.
    Carvalho, P.
    Carvalho, I.
    Climent, M. Fontdecaba
    Dunai, D.
    Frassinetti, L.
    Garzotti, L.
    Kochl, F.
    Lowry, J. C.
    de la Luna, E.
    Maggi, C. F.
    Morales, R. B.
    Nowak, S.
    Olde, C.
    Refy, D.
    Rimini, F.
    Silburn, S.
    Stancar, Z.
    Tvalashvili, G.
    Vecsei, M.
    NUCLEAR FUSION, 2024, 64 (07)
  • [22] EVOLUTION DES MELANGES DEUTERIUM-TRITIUM
    BOULEGUE, G
    CHANSON, P
    COMBE, R
    FEIX, M
    STRASMAN, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1958, 247 (03): : 284 - 286
  • [23] RECENT RESEARCH ON CRYOGENIC DEUTERIUM-TRITIUM
    SOUERS, PC
    FEARON, EM
    STARK, RL
    TSUGAWA, RT
    INTERNATIONAL JOURNAL OF APPLIED RADIATION AND ISOTOPES, 1980, 31 (08): : 494 - 494
  • [24] RF physics in Deuterium-Tritium plasmas
    Phillips, CK
    Bell, M
    Bell, RE
    Bernabei, S
    Fredrickson, E
    Hosea, JC
    LeBlanc, BP
    Majeski, R
    Medley, S
    Ono, M
    Schilling, G
    Synakowski, E
    Taylor, G
    Wilson, JR
    RADIO FREQUENCY POWER IN PLASMAS, 1999, 485 : 69 - 78
  • [25] DEUTERIUM-TRITIUM PELLET SHAPES AND CONSTRUCTIONS
    MANOR, RE
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1979, 69 (10) : 1446 - 1446
  • [26] THERMALIZATION OF THE MUONIC-TRITIUM ATOM IN DEUTERIUM-TRITIUM MIXTURES
    COHEN, JS
    PHYSICAL REVIEW A, 1986, 34 (04): : 2719 - 2730
  • [27] CONFINEMENT AND HEATING OF A DEUTERIUM-TRITIUM PLASMA
    HAWRYLUK, RJ
    ADLER, H
    ALLING, P
    ANCHER, C
    ANDERSON, H
    ANDERSON, JL
    ASHCROFT, D
    BARNES, CW
    BARNES, G
    BATHA, S
    BELL, MG
    BELL, R
    BITTER, M
    BLANCHARD, W
    BRETZ, NL
    BUDNY, R
    BUSH, CE
    CAMP, R
    CAORLIN, M
    CAUFFMAN, S
    CHANG, Z
    CHENG, CZ
    COLLINS, J
    COWARD, G
    DARROW, DS
    DELOOPER, J
    DUONG, H
    DUDEK, L
    DURST, R
    EFTHIMION, PC
    ERNST, D
    FISHER, R
    FLONCK, RJ
    FREDERICKSON, E
    FROMM, N
    FU, GY
    FURTH, HP
    GENTILE, C
    GORELENKOV, N
    GREK, B
    GRISHAM, LR
    HAMMETT, G
    HANSON, GR
    HEIDBRINK, W
    HERRMANN, HW
    HILL, KW
    HOSEA, J
    HSUAN, H
    JANOS, A
    JASSBY, DL
    PHYSICAL REVIEW LETTERS, 1994, 72 (22) : 3530 - 3533
  • [28] Deuterium-tritium fusion reactors without external tritium breeding
    Eliezer, S.
    Henis, Z.
    Martínez-Val, J.M.
    Piera, M.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 243 (5-6): : 311 - 318
  • [29] Deuterium-tritium fusion reactors without external tritium breeding
    Eliezer, S
    Henis, Z
    Martinez-Val, JM
    Piera, M
    PHYSICS LETTERS A, 1998, 243 (5-6) : 311 - 318
  • [30] BURN PERFORMANCE OF DEUTERIUM-TRITIUM, DEUTERIUM-DEUTERIUM, AND CATALYZED DEUTERIUM ICF TARGETS
    HARRIS, DB
    BLUE, TE
    NUCLEAR FUSION, 1983, 23 (08) : 1071 - 1077