Biochar supported nanoscale zero-valent iron for the kinetics removal and mechanism of decabromodiphenyl ethane in the sediment

被引:0
|
作者
Lu, Cong [1 ]
Zhao, Xuan [1 ]
Qiao, Zhihua [1 ]
Luo, Kailun [1 ]
Zhou, Shanqi [1 ]
Fu, Mengru [1 ]
Peng, Cheng [1 ,2 ]
Zhang, Wei [1 ]
机构
[1] East China Univ Sci & Technol, Sch Resource & Environm Engn, State Environm Protect Key Lab Environm Risk Asses, Shanghai 200237, Peoples R China
[2] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
DBDPE; BC; nZVI; Sediment; Removal efficiency; Degradation mechanism; BROMINATED FLAME RETARDANTS; POLYBROMINATED DIPHENYL ETHERS; SOIL; SORPTION; BIOACCUMULATION; DEGRADATION; ADSORPTION; REACTIVITY; WATER; LEAD;
D O I
10.1007/s11356-023-27690-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The extensive applications of decabromodiphenyl ethane (DBDPE), a novel brominated flame retardant, have induced its accumulation in sediment, which may have a great negative impact on the ecological environment. In this work, the biochar/nano-zero-valent iron materials (BC/nZVI) were synthesized to remove DBDPE in the sediment. Batch experiments were carried out to investigate the influencing factors of the removal efficiency, and kinetic model simulation and thermodynamic parameter calculation were performed. The degradation products and mechanisms were probed. The results indicated that the addition of 0.10 g & BULL;g(-1) BC/nZVI to the sediment with an initial concentration of 10 mg & BULL;kg(-1) DBDPE could remove 43.73% of DBDPE during 24 h. The water content of the sediment was a critical factor in the removal of DBDPE, which was optimal at 1:2 of sediment to water. The removal efficiency and reaction rate were enhanced by increasing dosage, water content, and reaction temperature or decreasing initial concentration of DBDPE based on the fitting results of the quasi-first-order kinetic model. Additionally, the calculated thermodynamic parameters suggested that the removal process was a spontaneously and reversibly endothermic reaction. The degradation products were further determined by GC-MS, and the mechanisms were presumed that DBDPE was debrominated to produce octabromodiphenyl ethane (octa-BDPE). This study provides a potential remediation method for highly DBDPE-contaminated sediment by using BC/nZVI.
引用
收藏
页码:86821 / 86829
页数:9
相关论文
共 50 条
  • [21] Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron
    Li, Meirong
    Tang, Chenliu
    Zhang, Weixian
    Ling, Lan
    PROGRESS IN CHEMISTRY, 2022, 34 (04) : 846 - 856
  • [22] Role of Zeolite-Supported Nanoscale Zero-Valent Iron in Selenate Removal
    Phanthasri, Jakkapop
    Grisdanurak, Nurak
    Khamdahsag, Pummarin
    Wantala, Kitirote
    Khunphonoi, Rattabal
    Wannapaiboon, Suttipong
    Tanboonchuy, Visanu
    WATER AIR AND SOIL POLLUTION, 2020, 231 (05):
  • [23] Removal of bromate using nanoscale zero-valent iron supported on activated carbon
    Yang, Qi
    Wu, Xiu-Qiong
    Zhong, Yu
    Li, Xiao-Ming
    Deng, Xiao
    Li, Na
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2013, 40 (12): : 97 - 102
  • [24] Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate
    Zhang Huan
    Jin Zhao-Hui
    Han Lu
    Qin Cheng-hua
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2006, 16 (SUPPL.): : S345 - S349
  • [25] Biochar supported sulfide-modified nanoscale zero-valent iron for the reduction of nitrobenzene
    Zhang, Dejin
    Li, Yang
    Tong, Siqi
    Jiang, Xinbai
    Wang, Lianjun
    Sun, Xiuyun
    Li, Jiansheng
    Liu, Xiaodong
    Shen, Jinyou
    RSC ADVANCES, 2018, 8 (39): : 22161 - 22168
  • [26] Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate
    张环
    金朝晖
    韩璐
    秦承华
    TransactionsofNonferrousMetalsSocietyofChina, 2006, (S1) : 345 - 349
  • [27] Nanoscale zero-valent iron supported on carbon nanotubes for polychlorinated biphenyls removal
    Cao, Xiuqin
    Wang, Haoran
    Yang, Chunmiao
    Cheng, Lin
    Fu, Kunming
    Qiu, Fuguo
    DESALINATION AND WATER TREATMENT, 2020, 201 : 173 - 186
  • [28] Role of Zeolite-Supported Nanoscale Zero-Valent Iron in Selenate Removal
    Jakkapop Phanthasri
    Nurak Grisdanurak
    Pummarin Khamdahsag
    Kitirote Wantala
    Rattabal Khunphonoi
    Suttipong Wannapaiboon
    Visanu Tanboonchuy
    Water, Air, & Soil Pollution, 2020, 231
  • [29] Removal mechanism of Pb(<sc>ii</sc>) from soil by biochar-supported nanoscale zero-valent iron composite materials
    Wei, Shuxian
    Du, Gang
    Li, Canhua
    Zhang, Lanyue
    Li, Jiamao
    Mao, Aiqin
    He, Chuan
    RSC ADVANCES, 2024, 14 (26) : 18148 - 18160
  • [30] New Insight into the Mechanism for the Removal of Methylene Blue by Hydrotalcite-Supported Nanoscale Zero-Valent Iron
    Fan, Jiaqi
    Zhang, Bo
    Zhu, Bohong
    Shen, Weili
    Chen, Yuan
    Zeng, Fanjun
    WATER, 2023, 15 (01)