Investigating the best automatic programming method in predicting the aerodynamic characteristics of wind turbine blade

被引:7
|
作者
Arslan, Sibel [1 ]
Koca, Kemal [2 ]
机构
[1] Sivas Cumhuriyet Univ, Dept Software Engn, TR-58140 Sivas, Turkiye
[2] Abdullah Gul Univ, Dept Mech Engn, TR-38080 Kayseri, Turkiye
关键词
Automatic programming; Genetic programming; Artificial bee colony programming; Aerodynamic coefficients; Power efficiency; Wind turbine blade; PERFORMANCE ANALYSIS; AIRFOIL; RATIO;
D O I
10.1016/j.engappai.2023.106210
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic programming (AP) is a subfield of artificial intelligence (AI) that can automatically generate computer programs and solve complex engineering problems. This paper presents the accuracy of four different AP methods in predicting the aerodynamic coefficients and power efficiency of the AH 93-W-145 wind turbine blade at different Reynolds numbers and angles of attack. For the first time in the literature, Genetic Programming (GP) and Artificial Bee Colony Programming (ABCP) methods are used for such predictions. In addition, Airfoil Tools and JavaFoil are utilized for airfoil selection and dataset generation. The Reynolds number and angle of attack of the wind turbine airfoil are input parameters, while the coefficients CL, CD and power efficiency are output parameters. The results show that while all four methods tested in the study accurately predict the aerodynamic coefficients, Multi Gene GP (MGGP) method achieves the highest accuracy for R2Train and R2Test (R2 values in CD Train: 0.997-Test: 0.994, in CL Train: 0.991-Test: 0.990, in PE Train: 0.990-Test: 0.970). By providing the most precise model for properly predicting the aerodynamic performance of higher cambered wind turbine airfoils, this innovative and comprehensive study will close a research gap. This will make a significant contribution to the field of AI and aerodynamics research without experimental cost, labor, and additional time.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Boundary element calculation method for aerodynamic inverse problem of wind turbine blade contour
    Yi, Fengming
    Sun, Chiping
    Weixi Jiagong Jishu/Microfabrication Technology, 1995, (01): : 125 - 130
  • [22] Reduced order model for unsteady aerodynamic of wind turbine blade
    Zhao, Ling
    Ran, Jinghong
    Lü, Jinan
    Liu, Ziqiang
    Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics and Astronautics, 2011, 43 (05): : 682 - 687
  • [23] Aerodynamic Optimization of a Swept Horizontal Axis Wind Turbine Blade
    Kaya, Mehmet Numan
    Kose, Faruk
    Uzol, Oguz
    Ingham, Derek
    Ma, Lin
    Pourkashanian, Mohamed
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2021, 143 (09):
  • [24] Effect of protuberances on the aerodynamic performance of a wind turbine blade - a review
    Maurya, Nancy
    Patil, Anuj U.
    Salunkhe, Pramod B.
    Varpe, Mahesh
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 3416 - 3431
  • [25] Blade Profile Aerodynamic Performance of a Horizontal Axis Wind Turbine
    Soares, A. A.
    Correia, H.
    Rouboa, A.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [26] Validation of AWTSim as Aerodynamic Analysis for Design Wind Turbine Blade
    Wiratama, I. Kade
    ADVANCES IN APPLIED MECHANICS AND MATERIALS, 2014, 493 : 105 - 110
  • [27] An investigation of the aerodynamic response of a wind turbine blade to tower shadow
    Munduate, X
    Coton, FN
    Galbraith, RAM
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2004, 126 (04): : 1034 - 1040
  • [28] Influence of aerodynamic shape of wind turbine blades on blade mass
    Zhang, Lei
    Yang, Ke
    Liao, Cai-Cai
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2014, 35 (06): : 1087 - 1090
  • [29] Effects of Offset Blade on Aerodynamic Characteristics of Small-Scale Vertical Axis Wind Turbine
    Yan Li
    Shouyang Zhao
    Chunming Qu
    Fang Feng
    Tagawa Kotaro
    Journal of Thermal Science, 2019, 28 : 326 - 339
  • [30] Impact of blade structural and aerodynamic uncertainties on wind turbine loads
    Gonzaga, Paulo
    Toft, Henrik
    Worden, Keith
    Dervilis, Nikolaos
    Bernhammer, Lars
    Stevanovic, Nevena
    Gonzales, Alejandro
    WIND ENERGY, 2022, 25 (06) : 1060 - 1076