MINDG: A Drug-Target Interaction Prediction Method Based on an Integrated Learning Algorithm

被引:3
|
作者
Yang, Hailong [1 ]
Chen, Yue [1 ]
Zuo, Yun [1 ]
Deng, Zhaohong [1 ]
Pan, Xiaoyong [2 ]
Shen, Hong-Bin [2 ]
Choi, Kup-Sze [3 ]
Yu, Dong-Jun [4 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Automat, Shanghai, Peoples R China
[3] Hong Kong Polytech Univ, Sch Nursing, Hong Kong, Peoples R China
[4] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1093/bioinformatics/btae147
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Drug target interaction (DTI) prediction refers to the prediction of whether a given drug molecule will bind to a specific target and thus exert a targeted therapeutic effect. Although intelligent computational approaches for drug target prediction have received much attention and made many advances, they are still a challenging task that requires further research. The main challenges are manifested as follows: (1) Most graph neural network-based methods only consider the information of the first-order neighboring nodes (drug and target) in the graph, without learning deeper and richer structural features from the higher-order neighboring nodes. (2) Existing methods do not consider both the sequence and structural features of drugs and targets, and each method is independent of each other, and cannot combine the advantages of sequence and structural features to improve the interactive learning effect. Results To address the above challenges, a Multi-view Integrated learning Network that integrates Deep learning and Graph Learning (MINDG) is proposed in this study, which consists of the following parts:(1) A mixed deep network is used to extract sequence features of drugs and targets.(2) A higher-order graph attention convolutional network is proposed to better extract and capture structural features.(3) A multi-view adaptive integrated decision module is used to improve and complement the initial prediction results of the above two networks to enhance the prediction performance. We evaluate MINDG on two dataset and show it improved DTI prediction performance compared to state-of-the-art baselines. Availability https://github.com/jnuaipr/MINDG Supplementary information are available at Bioinformatics online.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Multitype Perception Method for Drug-Target Interaction Prediction
    Wang, Huan
    Liu, Ruigang
    Wang, Baijing
    Hong, Yifan
    Cui, Ziwen
    Ni, Qiufen
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (06) : 3489 - 3498
  • [22] A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network
    Jiajie Peng
    Jingyi Li
    Xuequn Shang
    BMC Bioinformatics, 21
  • [23] A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network
    Peng, Jiajie
    Li, Jingyi
    Shang, Xuequn
    BMC BIOINFORMATICS, 2020, 21 (Suppl 13)
  • [24] NegStacking: Drug-Target Interaction Prediction Based on Ensemble Learning and Logistic Regression
    Yang, Jie
    He, Song
    Zhang, Zhongnan
    Bo, Xiaochen
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (06) : 2624 - 2634
  • [25] Recent Advances in the Machine Learning-based Drug-target Interaction Prediction
    Zhang, Wen
    Lin, Weiran
    Zhang, Ding
    Wang, Siman
    Shi, Jingwen
    Niu, Yanqing
    CURRENT DRUG METABOLISM, 2019, 20 (03) : 194 - 202
  • [26] A Machine Learning-Based Biological Drug-Target Interaction Prediction Method for a Tripartite Heterogeneous Network
    Zheng, Ying
    Wu, Zheng
    ACS OMEGA, 2021, 6 (04): : 3037 - 3045
  • [27] Drug-Target Interaction Prediction Based on Heterogeneous Networks
    Wang, Yingjie
    Chang, Huiyou
    Wang, Jihong
    Shi, Yue
    2018 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND BIOINFORMATICS (ICBEB 2018), 2018, : 14 - 18
  • [28] A novel method for drug-target interaction prediction based on graph transformers model
    Hongmei Wang
    Fang Guo
    Mengyan Du
    Guishen Wang
    Chen Cao
    BMC Bioinformatics, 23
  • [29] DeepPurpose: a deep learning library for drug-target interaction prediction
    Huang, Kexin
    Fu, Tianfan
    Glass, Lucas M.
    Zitnik, Marinka
    Xiao, Cao
    Sun, Jimeng
    BIOINFORMATICS, 2020, 36 (22-23) : 5545 - 5547
  • [30] A novel method for drug-target interaction prediction based on graph transformers model
    Wang, Hongmei
    Guo, Fang
    Du, Mengyan
    Wang, Guishen
    Cao, Chen
    BMC BIOINFORMATICS, 2022, 23 (01)