Discretization of laser model with bifurcation analysis and chaos control

被引:1
|
作者
Din, Qamar [1 ]
Ishaque, Waqas [1 ]
Maqsood, Iqra [1 ]
Tounsi, Abdelouahed [2 ]
机构
[1] Univ Poonch Rawalakot, Dept Math, Rawalakot 12350, Azad Kashmir, Pakistan
[2] Univ Sidi Bel, Dept Civil Engn, Sidi Bel Abbes 22000, Algeria
关键词
chaos control; neimark-sacker bifurcation; period-doubling bifurcation; single-mode laser model; stability; PERIOD-DOUBLING BIFURCATION; DISCRETE-TIME; SECURE COMMUNICATION; SYNCHRONIZATION; INSTABILITIES; DYNAMICS; STABILITY; BEHAVIOR; SYSTEMS; FLOW;
D O I
10.12989/anr.2023.15.1.025
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper investigates the dynamics and stability of steady states in a continuous and discrete-time single-mode laser system. By using an explicit criteria we explored the Neimark-Sacker bifurcation of the single mode continuous and discrete-time laser model at its positive equilibrium points. Moreover, we discussed the parametric conditions for the existence of period-doubling bifurcations at their positive steady states for the discrete time system. Both types of bifurcations are verified by the Lyapunov exponents, while the maximum Lyapunov ensures chaotic and complex behaviour. Furthermore, in a three-dimensional discrete-time laser model, we used a hybrid control method to control period-doubling and Neimark-Sacker bifurcation. To validate our theoretical discussion, we provide some numerical simulations.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 50 条
  • [31] Bifurcation analysis and chaos control for a plant-herbivore model with weak predator functional response
    Din, Qamar
    Shabbir, M. Sajjad
    Khan, M. Asif
    Ahmad, Khalil
    JOURNAL OF BIOLOGICAL DYNAMICS, 2019, 13 (01) : 481 - 501
  • [32] Bifurcation analysis and chaos control in Zhou's dynamical system
    Aly, E. S.
    El-Dessoky, M. M.
    Yassen, M. T.
    Saleh, E.
    Aiyashi, M. A.
    Msmali, Ahmed Hussein
    ENGINEERING COMPUTATIONS, 2022, 39 (05) : 1984 - 2002
  • [33] Bifurcation and Chaos Theory in Electrical Power Systems: Analysis and Control
    Harb, Ahmad M.
    Batarseh, Issa
    Mili, Lamine M.
    Zohdy, Mohamed A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [34] Bifurcation analysis and chaos control for Lu system with delayed feedback
    Xiao, Min
    Cao, Jinde
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (12): : 4309 - 4322
  • [35] Bifurcation analysis and chaos in a discrete Hepatitis B virus model
    Khan, Abdul Qadeer
    Bibi, Fakhra
    Aldosary, Saud Fahad
    AIMS MATHEMATICS, 2024, 9 (07): : 19597 - 19625
  • [36] DISCRETIZATION AND CHAOS CONTROL IN A FRACTIONAL ORDER PREDATOR-PREY HARVESTING MODEL
    Amirtharaj, George M. S.
    Rajendran, Janagaraj
    Dhakshinamoorthy, Vignesh
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (02): : 950 - 964
  • [37] Bifurcation analysis and chaos of a discrete-time Kolmogorov model
    Khan, A. Q.
    Khaliq, S.
    Tunc, O.
    Khaliq, A.
    Javaid, M. B.
    Ahmed, I
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2021, 15 (01): : 1054 - 1067
  • [38] Bifurcation, chaos, and stability analysis to the second fractional WBBM model
    Ullah, Mohammad Safi
    Ali, M. Zulfikar
    Roshid, Harun-Or
    PLOS ONE, 2024, 19 (07):
  • [39] Bifurcation,Chaos and Control in Nervous System
    龚云帆,徐健学,任维,胡三觉,王复周
    生物物理学报, 1996, (04) : 663 - 669
  • [40] Bifurcation and control of chaos in a chemical system
    Xu, Changjin
    Wu, Yusen
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (08) : 2295 - 2310