Gas-phase thermochemistry of noncovalent ligand-alkali metal ion clusters: An impact of low frequencies

被引:9
|
作者
Otlyotov, Arseniy A. [1 ]
Minenkov, Yury [1 ,2 ,3 ]
机构
[1] RAS, NN Semenov Fed Res Ctr Chem Phys, Moscow, Russia
[2] Russian Acad Sci, Joint Inst High Temp, Moscow, Russia
[3] RAS, Semenov Fed Res Ctr Chem Phys, Kosygina St 4, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
alkali metal ion clusters; cationic noncovalent interactions; harmonic oscillator; low vibrational frequencies; vibrational entropy; HARMONIC VIBRATIONAL FREQUENCIES; COLLISION-INDUCED DISSOCIATION; DENSITY-FUNCTIONAL THEORY; SOLVATION FREE-ENERGY; CONSISTENT BASIS-SETS; AB-INITIO; CONTINUUM MODEL; SCALE FACTORS; HARTREE-FOCK; SODIUM-ION;
D O I
10.1002/jcc.27129
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The experimental gas-phase thermochemistry of reactions: M+(S)(n-1) + S? M+(S)(n) and M+ + nS? M+(S)(n), where M is an alkali metal and S is acetonitrile/ammonia, is reproduced. Three approximations are tested: (1) scaled rigid-rotor-harmonic-oscillator (sRRHO); (2) the sRRHO(100) identical to (1), but with all vibrational frequencies smaller than 100 cm(-1) replaced with 100 cm(-1); (3) Grimme's modified scaled RRHO (msRRHO) (Grimme, Chem. Eur. J., 2012, 18, 9955-9964). The msRRHO approach provides the most accurate reaction entropies with the mean unsigned error (MUE) below 5.5 cal mol(-1) K-1 followed by sRRHO(100) and sRRHO with MUEs of 7.2 and 16.9 cal mol(-1) K-1. For the first time, we propose using the msRRHO scheme to calculate the enthalpy contribution that is further utilized to arrive at reaction Gibbs free energies (? G(r)) ensuring the internal consistency. The final increment G(r) MUEs for msRRHO, sRRHO(100) and sRRHO schemes are 1.2, 3.6 and 3.1 kcal mol(-1).
引用
收藏
页码:1807 / 1816
页数:10
相关论文
共 50 条
  • [31] INTERACTION OF ZN+ WITH ISOBUTYLENE IN THE GAS-PHASE AND IN CLUSTERS - METAL-ION INDUCED CATIONIC POLYMERIZATION
    DALY, GM
    PITHAWALLA, YB
    YU, Z
    ELSHALL, MS
    CHEMICAL PHYSICS LETTERS, 1995, 237 (1-2) : 97 - 105
  • [32] Metal-ligand interactions: gas-phase transition metal cluster carbonyls
    Ervin, KM
    INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2001, 20 (02) : 127 - 164
  • [33] Gas-Phase Alkali-Metal Cation Affinities of Stabilized Enolates
    Eisele, Niklas F.
    Rahrt, Rene
    Giachanou, Lamprini
    Shikho, Fadi
    Koszinowski, Konrad
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (71)
  • [34] Gas-Phase Structures of Fucosylated Oligosaccharides: Alkali Metal and Halogen Influences
    Miller, Samuel A.
    Fouque, Kevin Jeanne Dit
    Mebel, Alexander M.
    Chandler, Kevin Brown
    Fernandez-Lima, Francisco
    JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 128 (37): : 8869 - 8877
  • [35] Competitive gas-phase solvation of alkali metal ions by water and methanol
    Nielsen, SB
    Masella, M
    Kebarle, P
    JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (48): : 9891 - 9898
  • [36] The gas-phase kinetics of reactions of alkali metal atoms with nitric oxide
    Goumri, A
    Rocha, JDR
    Misra, A
    Marshall, P
    JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (46): : 9252 - 9258
  • [37] EVIDENCE FOR THE ENCAGEMENT OF ALKALI-METAL IONS THROUGH THE FORMATION OF GAS-PHASE CLATHRATES - CS+ IN WATER CLUSTERS
    SELINGER, A
    CASTLEMAN, AW
    JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (22): : 8442 - 8444
  • [38] GENERATION OF GAS-PHASE METAL-CLUSTERS BY SEEDED BEAM EXPANSIONS
    KAPPES, MM
    KUNZ, RW
    SCHUMACHER, E
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1983, 185 (MAR): : 123 - PHYS
  • [39] Vibrational spectroscopy of gas-phase metal-carbide clusters and nanocrystals
    van Heijnsbergen, D
    von Helden, G
    Duncan, MA
    van Roij, AJA
    Meijer, G
    PHYSICAL REVIEW LETTERS, 1999, 83 (24) : 4983 - 4986
  • [40] RECENT ADVANCES IN THE CHEMISTRY OF GAS-PHASE TRANSITION-METAL CLUSTERS
    KALDOR, A
    COX, DM
    PURE AND APPLIED CHEMISTRY, 1990, 62 (01) : 79 - 88