Exploring Explainable Artificial Intelligence Techniques for Interpretable Neural Networks in Traffic Sign Recognition Systems

被引:2
|
作者
Khan, Muneeb A. [1 ]
Park, Heemin [1 ]
机构
[1] Sangmyung Univ, Dept Software, Cheonan 31066, South Korea
关键词
road safety; traffic sign recognition; traffic management; intelligent transportation systems; interpretable neural network; SAFETY;
D O I
10.3390/electronics13020306
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic Sign Recognition (TSR) plays a vital role in intelligent transportation systems (ITS) to improve road safety and optimize traffic management. While existing TSR models perform well in challenging scenarios, their lack of transparency and interpretability hinders reliability, trustworthiness, validation, and bias identification. To address this issue, we propose a Convolutional Neural Network (CNN)-based model for TSR and evaluate its performance on three benchmark datasets: German Traffic Sign Recognition Benchmark (GTSRB), Indian Traffic Sign Dataset (ITSD), and Belgian Traffic Sign Dataset (BTSD). The proposed model achieves an accuracy of 98.85% on GTSRB, 94.73% on ITSD, and 92.69% on BTSD, outperforming several state-of-the-art frameworks, such as VGG19, VGG16, ResNet50V2, MobileNetV2, DenseNet121, DenseNet201, NASNetMobile, and EfficientNet, while also providing faster training and response times. We further enhance our model by incorporating explainable AI (XAI) techniques, specifically, Local Interpretable Model-Agnostic Explanations (LIME) and Gradient-weighted Class Activation Mapping (Grad-CAM), providing clear insights of the proposed model decision-making process. This integration allows the extension of our TSR model to various engineering domains, including autonomous vehicles, advanced driver assistance systems (ADAS), and smart traffic control systems. The practical implementation of our model ensures real-time, accurate recognition of traffic signs, thus optimizing traffic flow and minimizing accident risks.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Explainable vs. interpretable artificial intelligence frameworks in oncology
    Bertsimas, Dimitris
    Margonis, Georgios Antonios
    TRANSLATIONAL CANCER RESEARCH, 2023, 12 (02) : 217 - 220
  • [22] Automated and Interpretable Fake News Detection With Explainable Artificial Intelligence
    Giri, Moyank
    Eswaran, Sivaraman
    Honnavalli, Prasad
    Daniel, D.
    JOURNAL OF APPLIED SECURITY RESEARCH, 2024,
  • [23] Explainable and interpretable artificial intelligence in medicine: a systematic bibliometric review
    Frasca M.
    La Torre D.
    Pravettoni G.
    Cutica I.
    Discov. Artif. Intell., 2024, 1 (1):
  • [24] Fuzzy Networks for Explainable Artificial Intelligence
    Arabikhan, Farzad
    Gegov, Alexander
    Kaymak, Uzay
    Akbari, Negar
    2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, 2023, : 199 - 200
  • [25] Condition Monitoring of Wind Turbine Systems by Explainable Artificial Intelligence Techniques
    Astolfi, Davide
    De Caro, Fabrizio
    Vaccaro, Alfredo
    SENSORS, 2023, 23 (12)
  • [26] Investigating Binary Neural Networks for Traffic Sign Detection and Recognition
    Chen, Ee Heng
    Vemparala, Manoj Rohit
    Fasfous, Nael
    Frickenstein, Alexander
    Mzid, Ahmed
    Nagaraja, Naveen Shankar
    Zeisler, Joeran
    Stechele, Walter
    2021 32ND IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2021, : 1400 - 1405
  • [27] Frequency Selective Convolutional Neural Networks for Traffic Sign Recognition
    Lian, Zifeng
    Jing, Xiaojun
    Sun, Songlin
    Huang, Hai
    2016 IEEE 83RD VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2016,
  • [28] Exploring cross-national divide in government adoption of artificial intelligence: Insights from explainable artificial intelligence techniques
    Wang, Shangrui
    Xiao, Yiming
    Liang, Zheng
    TELEMATICS AND INFORMATICS, 2024, 90
  • [29] A Survey on Explainable Artificial Intelligence Techniques and Challenges
    Hanif, Ambreen
    Zhang, Xuyun
    Wood, Steven
    2021 IEEE 25TH INTERNATIONAL ENTERPRISE DISTRIBUTED OBJECT COMPUTING CONFERENCE WORKSHOPS (EDOCW 2021), 2021, : 81 - 89
  • [30] Comparing techniques for TEmporal eXplainable Artificial Intelligence
    Canti, Edoardo
    Collini, Enrico
    Palesi, Luciano Alessandro Ipsaro
    Nesi, Paolo
    2024 IEEE 10TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND MACHINE LEARNING APPLICATIONS, BIGDATASERVICE 2024, 2024, : 87 - 91