Machine learning the relationship between Debye temperature and superconducting transition temperature

被引:2
|
作者
Smith, Adam D. [1 ]
Harris, Sumner B. [2 ]
Camata, Renato P. [1 ]
Yan, Da [3 ]
Chen, Cheng-Chien [1 ]
机构
[1] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[3] Univ Alabama Birmingham, Dept Comp Sci, Birmingham, AL 35294 USA
基金
美国国家科学基金会;
关键词
CRYSTAL-STRUCTURE; ELECTRONS; HYDRIDE; METALS; MGB2;
D O I
10.1103/PhysRevB.108.174514
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently a relationship between the Debye temperature OD and the superconducting transition temperature Tc of conventional superconductors has been proposed [Esterlis et al., npj Quantum Mater. 3, 59 (2018)]. The relationship indicates that Tc AOD for phonon-mediated BCS superconductors, with A being a prefactor of order -0.1. In order to verify this bound, we train machine learning (ML) models with 10 330 samples in the Materials Project database to predict OD. By applying our ML models to 9860 known superconductors in the NIMS SuperCon database, we find that the conventional superconductors in the database indeed follow the proposed bound. We also perform first-principles phonon calculations for H3S and LaH10 at 200 GPa. The calculation results indicate that these high-pressure hydrides essentially saturate the bound of Tc versus OD.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Machine Learning Prediction of Superconducting Critical Temperature through the Structural Descriptor
    Zhang, Jingzi
    Zhu, Zhuoxuan
    Xiang, X. -D.
    Zhang, Ke
    Huang, Shangchao
    Zhong, Chengquan
    Qiu, Hua-Jun
    Hu, Kailong
    Lin, Xi
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (20): : 8922 - 8927
  • [42] Estimation of electronic contribution to the debye temperature of transition metals
    Raju, Subramanian
    Mohandas, Eladath
    Raghunathan, Vinjamoor Seshadri
    Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 1996, 87 (01): : 51 - 54
  • [43] Relationship between macromolecular structure and glass transition temperature
    Yao, S
    NIHON REOROJI GAKKAISHI, 2000, 28 (04) : 183 - 186
  • [44] An estimation of electronic contribution to the Debye temperature of transition metals
    Raju, S
    Mohandas, E
    Raghunathan, VS
    ZEITSCHRIFT FUR METALLKUNDE, 1996, 87 (01): : 51 - 54
  • [45] On the Debye temperature
    Magomedov, MN
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY, 2002, 76 (05): : 687 - 690
  • [46] On the Debye temperature
    Magomedov, M.N.
    2002, MAIK Nauka (76):
  • [47] A Machine Learning Framework for Predicting the Glass Transition Temperature of Homopolymers
    Nguyen, Tung
    Bavarian, Mona
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (34) : 12690 - 12698
  • [48] Machine learning glass transition temperature of styrenic random copolymers
    Zhang, Yun
    Xu, Xiaojie
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2021, 103
  • [49] Modelling and optimization of the superconducting transition temperature
    Zhang, Hui-ran
    Zhang, Yan
    Dai, Dong-bo
    Cao, Min
    Shen, Wen-feng
    MATERIALS & DESIGN, 2016, 92 : 371 - 377
  • [50] TRANSITION TEMPERATURE OF SUPERCONDUCTING DILUTE ALLOYS
    GALLEANI.E
    MORANDI, G
    LETTERE AL NUOVO CIMENTO, 1971, 1 (18): : 729 - &