Prognostic prediction of left ventricular myocardial noncompaction using machine learning and cardiac magnetic resonance radiomics

被引:3
|
作者
Han, Pei-Lun [1 ,2 ]
Jiang, Ze-Kun [1 ,2 ]
Gu, Ran [3 ]
Huang, Shan [1 ,2 ]
Jiang, Yu [1 ,2 ]
Yang, Zhi-Gang [1 ,2 ,6 ,7 ]
Li, Kang [1 ,2 ,4 ,5 ,6 ,7 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Radiol, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp, West China Biomed Big Data Ctr, Chengdu, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China
[4] Sichuan Univ, Med X Ctr Informat, Chengdu, Peoples R China
[5] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
[6] Sichuan Univ, West China Hosp, Dept Radiol, 37 Guoxue Alley, Chengdu 610041, Peoples R China
[7] Sichuan Univ, West China Hosp, West China Biomed Big Data Ctr, 37 Guoxue Alley, Chengdu 610041, Peoples R China
关键词
Machine learning; radiomics; left ventricular myocardial noncompaction (LVNC); magnetic resonance imaging; prognosis; NON-COMPACTION; TEXTURE ANALYSIS; DIAGNOSIS; FEATURES; GENETICS;
D O I
10.21037/qims-23-372
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Although there are many studies on the prognostic factors of left ventricular myocardial noncompaction (LVNC), the determinants are varied and not entirely consistent. This study aimed to build predictive models using radiomics features and machine learning to predict major adverse cardiovascular events (MACEs) in patients with LVNC.Methods: In total, 96 patients with LVNC were included and randomly divided into training and test cohorts. A total of 105 cine cardiac magnetic resonance (CMR)-derived radiomics features and 35 clinical characteristics were extracted. Five different oversampling algorithms were compared for selection of the optimal imbalanced processing. Feature importance was assessed with extreme gradient boosting (XGBoost). We compared the performance of 5 machine learning classification methods with different sample:feature ratios to determine the optimal hybrid classification strategy. Subsequently, radiomics, clinical, and combined radiomics-clinical models were developed and compared.Results: The machine learning pipeline included an adaptive synthetic (ADASYN) algorithm for imbalanced processing, XGBoost feature selection with a sample:feature ratio of 10, and support vector machine (SVM) modeling. The areas under the receiver operating characteristic curves (AUCs) of the radiomics model, clinical model, and combined model in the validation cohort were 0.87 (sensitivity 83.33%, specificity 64.29%), 0.65 (sensitivity 16.67%, specificity 78.57%), and 0.92 (specificity 33.33%, sensitivity 100.00%), respectively. The radiomics model performed similarly to the clinical and combined models (P=0.124 and P=0.621, respectively). The performance of the combined model was significantly better than that of the clinical model (P=0.003).Conclusions: The machine learning-based cine CMR radiomics model performed well at predicting MACEs in patients with LVNC. Adding radiomics features offered incremental prognostic value over clinical factors alone.
引用
收藏
页码:6468 / +
页数:18
相关论文
共 50 条
  • [21] Clinical Risk Prediction in Patients With Left Ventricular Myocardial Noncompaction
    Casas, Guillem
    Limeres, Javier
    Oristrell, Gerard
    Gutierrez-Garcia, Laura
    Andreini, Daniele
    Borregan, Mar
    Larranaga-Moreira, Jose M.
    Lopez-Sainz, Angela
    Codina-Sola, Marta
    Teixido-Tura, Gisela
    Sorolla-Romero, Jose Antonio
    Fernandez-Alvarez, Paula
    Gonzalez-Carrillo, Josefa
    Guala, Andrea
    La Mura, Lucia
    Soler-Fernandez, Rafaela
    Sao Aviles, Augusto
    Jose Santos-Mateo, Juan
    Ramon Marsal, Josep
    Ribera, Aida
    Luis de la Pompa, Jose
    Villacorta, Eduardo
    Jimenez-Jaimez, Juan
    Ripoll-Vera, Tomas
    Bayes-Genis, Antoni
    Manuel Garcia-Pinilla, Jose
    Palomino-Doza, Julian
    Tiron, Coloma
    Pontone, Gianluca
    Bogaert, Jan
    Aquaro, Giovanni D.
    Ramon Gimeno-Blanes, Juan
    Zorio, Esther
    Garcia-Pavia, Pablo
    Barriales-Villa, Roberto
    Evangelista, Artur
    Giorgio Masci, Pier
    Ferreira-Gonzalez, Ignacio
    Rodriguez-Palomares, Jose F.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 78 (07) : 643 - 662
  • [22] Automation of ischemic myocardial scar detection in cardiac magnetic resonance imaging of the left ventricle using machine learning
    Udin, Michael H.
    Ionitaa, Ciprian N.
    Pokharela, Saraswati
    Sharmaa, Umesh C.
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [23] Value of Cardiac Magnetic Resonance Fractal Analysis Combined With Myocardial Strain in Discriminating Isolated Left Ventricular Noncompaction and Dilated Cardiomyopathy
    Zheng, Tian
    Ma, Xiaohai
    Li, Shuhao
    Ueda, Takuya
    Wang, Zheng
    Lu, Aijia
    Zhou, Wei
    Zou, Hongye
    Zhao, Lei
    Gong, Lianggeng
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (01) : 153 - 163
  • [24] A MACHINE LEARNING ALGORITHM TO PREDICT LEFT VENTRICULAR DIASTOLIC DYSFUNCTION BY CARDIAC MAGNETIC RESONANCE IMAGING
    Zhou, Qingtao
    Wang, Lin
    Barasch, Eddy
    Passick, Michael
    Craft, Jason
    Weber, Jonathan
    Ngai, Nora
    Scheiner, Jonathan
    Quijano, Kaitlyn
    Rao, Shreya
    Cao, Jie J.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 2029 - 2029
  • [25] Prognostic role of cardiac magnetic resonance in left ventricular non compaction
    Azpiroz Franch, M. J.
    Casas Masnou, G.
    Romero, A.
    Gonzalez Del Hoyo, M. I.
    Larranaga Moreira, J. M.
    Escalona Silva, R.
    Guala, A.
    Limeres Freire, J.
    Bayes De Luna, A.
    Zorio Grima, E.
    Villacorta Arguelles, E.
    Garcia Pavia, P.
    Barriales Villa, R.
    Ferreira Gonzalez, I.
    Rodriguez Palomares, J. F.
    EUROPEAN HEART JOURNAL, 2022, 43 : 254 - 254
  • [26] Association of Left Ventricular Noncompaction with Polycystic Kidney Disease as Shown by Cardiac Magnetic Resonance Imaging
    Katukuri, Neelima Penugonda
    Finger, John
    Vaitkevicius, Peter
    Riba, Arthur
    Spears, James Richard
    TEXAS HEART INSTITUTE JOURNAL, 2014, 41 (04) : 449 - 450
  • [27] Myocardial fibrosis of left ventricle: Magnetic resonance imaging in noncompaction
    Alsaileek, Ahmed A.
    Syed, Imran
    Seward, James B.
    Julsrud, Paul
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 27 (03) : 621 - 624
  • [28] Prediction of Left Ventricular Mechanics Using Machine Learning
    Dabiri, Yaghoub
    Van der Velden, Alex
    Sack, Kevin L.
    Choy, Jenny S.
    Kassab, Ghassan S.
    Guccione, Julius M.
    FRONTIERS IN PHYSICS, 2019, 7
  • [29] VALIDATION AND QUANTIFICATION OF MYOCARDIAL FIBROSIS WITH CARDIAC MAGNETIC RESONANCE AND LEFT VENTRICULAR MYOCARDIAL BIOPSY
    Hussain, Muzna
    Donnellan, Eoin
    Tan, Carmela
    Rodriguez, E. Rene
    Watson, Chris
    Moravec, Christine
    Tang, Wai Hong
    Soltesz, Edward
    Pettersson, Gosta
    Griffin, Brian
    Collier, Patrick
    Kwon, Deborah
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (09) : 1672 - 1672
  • [30] Machine Learning-Based Segmentation of Left Ventricular Myocardial Fibrosis from Magnetic Resonance Imaging
    Zabihollahy, Fatemeh
    Rajan, S.
    Ukwatta, E.
    CURRENT CARDIOLOGY REPORTS, 2020, 22 (08)