EXTREME VALUE INFERENCE FOR HETEROGENEOUS POWER LAW DATA

被引:0
|
作者
Einmahl, John H. J. [1 ,2 ]
He, Yi [3 ]
机构
[1] Tilburg Univ, Dept Econometr & OR, Tilburg, Netherlands
[2] Tilburg Univ, CentER, Tilburg, Netherlands
[3] Univ Amsterdam, Amsterdam Sch Econ, Amsterdam, Netherlands
来源
ANNALS OF STATISTICS | 2023年 / 51卷 / 03期
关键词
Extreme value statistics; functional central limit theorem; heterogeneous scales model; Hill estimator; nonidentical distributions; weighted tail empirical process; LIMIT-THEOREMS; TAIL; INDEX;
D O I
10.1214/23-AOS2294
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend extreme value statistics to independent data with possibly very different distributions. In particular, we present novel asymptotic normality results for the Hill estimator, which now estimates the extreme value index of the average distribution. Due to the heterogeneity, the asymptotic variance can be substantially smaller than that in the i.i.d. case. As a special case, we consider a heterogeneous scales model where the asymptotic variance can be calculated explicitly. The primary tool for the proofs is the functional central limit theorem for a weighted tail empirical process. We also present asymptotic normality results for the extreme quantile estimator. A simulation study shows the good finite-sample behavior of our limit theorems. We also present applications to assess the tail heaviness of earthquake energies and of cross-sectional stock market losses.
引用
收藏
页码:1331 / 1356
页数:26
相关论文
共 50 条
  • [41] On extreme value of voltage regulation of a power transformer
    Li, XH
    Zhang, Y
    Xiong, H
    APPLIED ELECTROMAGNETICS (III), 2001, 10 : 452 - 455
  • [42] Bayesian inference on extreme value distribution using upper record values
    Seo, Jung In
    Kim, Yongku
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (15) : 7751 - 7768
  • [43] RANK-BASED INFERENCE FOR BIVARIATE EXTREME-VALUE COPULAS
    Genest, Christian
    Segers, Johan
    ANNALS OF STATISTICS, 2009, 37 (5B): : 2990 - 3022
  • [44] Extreme value statistics and arcsine laws for heterogeneous diffusion processes
    Singh, Prashant
    PHYSICAL REVIEW E, 2022, 105 (02)
  • [45] Extreme value statistics and arcsine laws for heterogeneous diffusion processes
    Singh, Prashant
    arXiv, 2021,
  • [46] New generalized extreme value distribution with applications to extreme temperature data
    Gyasi, Wilson
    Cooray, Kahadawala
    ENVIRONMETRICS, 2024, 35 (03)
  • [47] Extreme value models with application to drought data
    Nadarjah S.
    Allgemeines Statistisches Archiv, 2006, 90 (3): : 403 - 418
  • [48] Extreme Value FEC for Wireless Data Broadcasting
    Xiao, Weiyao
    Starobinski, David
    IEEE INFOCOM 2009 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, VOLS 1-5, 2009, : 1908 - 1916
  • [49] Extreme value modeling for environmental data analysis
    José A. Villaseñor-Alva
    Elizabeth González-Estrada
    María Guzmán-Martínez
    Boletín de la Sociedad Matemática Mexicana, 2014, 20 (1) : 137 - 145
  • [50] Extreme value modeling for environmental data analysis
    Villasenor-Alva, Jose A.
    Gonzalez-Estrada, Elizabeth
    Guzman-Martinez, Maria
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2014, 20 (01): : 137 - 145