EXTREME VALUE INFERENCE FOR HETEROGENEOUS POWER LAW DATA

被引:0
|
作者
Einmahl, John H. J. [1 ,2 ]
He, Yi [3 ]
机构
[1] Tilburg Univ, Dept Econometr & OR, Tilburg, Netherlands
[2] Tilburg Univ, CentER, Tilburg, Netherlands
[3] Univ Amsterdam, Amsterdam Sch Econ, Amsterdam, Netherlands
来源
ANNALS OF STATISTICS | 2023年 / 51卷 / 03期
关键词
Extreme value statistics; functional central limit theorem; heterogeneous scales model; Hill estimator; nonidentical distributions; weighted tail empirical process; LIMIT-THEOREMS; TAIL; INDEX;
D O I
10.1214/23-AOS2294
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend extreme value statistics to independent data with possibly very different distributions. In particular, we present novel asymptotic normality results for the Hill estimator, which now estimates the extreme value index of the average distribution. Due to the heterogeneity, the asymptotic variance can be substantially smaller than that in the i.i.d. case. As a special case, we consider a heterogeneous scales model where the asymptotic variance can be calculated explicitly. The primary tool for the proofs is the functional central limit theorem for a weighted tail empirical process. We also present asymptotic normality results for the extreme quantile estimator. A simulation study shows the good finite-sample behavior of our limit theorems. We also present applications to assess the tail heaviness of earthquake energies and of cross-sectional stock market losses.
引用
收藏
页码:1331 / 1356
页数:26
相关论文
共 50 条
  • [1] Extreme Value Estimation for Heterogeneous Data
    Einmahl, John H. J.
    He, Yi
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 41 (01) : 255 - 269
  • [2] Flexible extreme value inference
    Jordanova, Pavlina
    Stehlik, Milan
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2024, 42 (01) : 219 - 263
  • [3] Distributed inference for the extreme value index
    Chen, Liujun
    Li, Deyuan
    Zhou, Chen
    BIOMETRIKA, 2022, 109 (01) : 257 - 264
  • [4] Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
    AghaKouchak, Amir
    Nasrollahi, Nasrin
    WATER RESOURCES MANAGEMENT, 2010, 24 (06) : 1229 - 1249
  • [5] Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
    Amir AghaKouchak
    Nasrin Nasrollahi
    Water Resources Management, 2010, 24 : 1229 - 1249
  • [6] Bayesian inference for multivariate extreme value distributions
    Dombry, Clement
    Engelke, Sebastian
    Oesting, Marco
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4813 - 4844
  • [7] Penalized likelihood inference in extreme value analyses
    Pauli, F
    Coles, S
    JOURNAL OF APPLIED STATISTICS, 2001, 28 (05) : 547 - 560
  • [8] Extreme Value GARCH modelling with Bayesian inference
    Zhao, X.
    Oxley, L.
    Scarrott, C.
    Reale, M.
    18TH WORLD IMACS CONGRESS AND MODSIM09 INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: INTERFACING MODELLING AND SIMULATION WITH MATHEMATICAL AND COMPUTATIONAL SCIENCES, 2009, : 1391 - 1397
  • [9] Communication Theoretic Inference on Heterogeneous Data
    Chen, Kwang-Cheng
    Mankir, Baturalp
    Huang, Shao-Lun
    Zheng, Lizhong
    Poor, H. Vincent
    2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2016,
  • [10] Meta inference of heterogeneous data streams
    Amiri, Saeid
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2021, 31 (05) : 617 - 633