Low-Light Image Enhancement via Stage-Transformer-Guided Network

被引:21
|
作者
Jiang, Nanfeng [1 ]
Lin, Junhong [1 ]
Zhang, Ting [1 ]
Zheng, Haifeng [1 ]
Zhao, Tiesong [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Phys & Informat Engn, Fujian Key Lab Intelligent Proc & Wireless Transmi, Fuzhou 350108, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-light image enhancement; multi-stage learning; degradation query;
D O I
10.1109/TCSVT.2023.3239511
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Images collected in low-light environments usually suffer from multiple, non-uniform distributed distortions, including local dark, dim light, backlit and so on. In this paper, we propose a Stage-Transformer-Guided Network (STGNet) that effectively handles region-specific distributions and enhance diverse low-light images. Specifically, our STGNet adopts a multi-stage way to progressively learn hierarchical features that benefit the robustness of our model. At each stage, we design an efficient transformer with horizontal and vertical attentions that jointly capture degradation distributions with different magnitudes and orientations. We also introduce learnable degradation queries to adaptively select task-specific features of degradations for enhancement. In addition, we design a histogram loss for enhancement and combine it with other loss functions, in order to exploit both global contrast and local details during network training. Benefiting from the above contributions, our STGNet achieves the state-of-the-art performances on both synthetic and real-world datasets.
引用
收藏
页码:3701 / 3712
页数:12
相关论文
共 50 条
  • [31] Exemplar-guided low-light image enhancement
    Yangming Shi
    Xiaopo Wu
    Binquan Wang
    Ming Zhu
    Multimedia Systems, 2022, 28 : 1861 - 1871
  • [32] Semantically-guided low-light image enhancement
    Xie, Junyi
    Bian, Hao
    Wu, Yuanhang
    Zhao, Yu
    Shan, Linmin
    Hao, Shijie
    PATTERN RECOGNITION LETTERS, 2020, 138 : 308 - 314
  • [33] Exemplar-guided low-light image enhancement
    Shi, Yangming
    Wu, Xiaopo
    Wang, Binquan
    Zhu, Ming
    MULTIMEDIA SYSTEMS, 2022, 28 (05) : 1861 - 1871
  • [34] A novel gradient and semantic-aware transformer network for low-light image enhancement
    Zhan, Tianming
    Lu, Chenyang
    Wu, Huapeng
    Wang, Chenyun
    MULTIMEDIA SYSTEMS, 2025, 31 (02)
  • [35] TCPCNet: a transformer-CNN parallel cooperative network for low-light image enhancement
    Wanjun Zhang
    Yujie Ding
    Miaohui Zhang
    Yonghua Zhang
    Lvchen Cao
    Ziqing Huang
    Jun Wang
    Multimedia Tools and Applications, 2024, 83 : 52957 - 52972
  • [36] TCPCNet: a transformer-CNN parallel cooperative network for low-light image enhancement
    Zhang, Wanjun
    Ding, Yujie
    Zhang, Miaohui
    Zhang, Yonghua
    Cao, Lvchen
    Huang, Ziqing
    Wang, Jun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (17) : 52957 - 52972
  • [37] Patch-Based Transformer for Low-Light Image Enhancement
    Zhang, Yu
    Jiang, Shan
    Tang, Xiangyun
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 268 - 273
  • [38] Pre-trained low-light image enhancement transformer
    Zhang, Jingyao
    Hao, Shijie
    Rao, Yuan
    IET IMAGE PROCESSING, 2024, 18 (08) : 1967 - 1984
  • [39] Low-light image enhancement based on Transformer and CNN architecture
    Chen, Keyuan
    Chen, Bin
    Wu, Shiqian
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3628 - 3633
  • [40] Attention Guided Low-Light Image Enhancement with a Large Scale Low-Light Simulation Dataset
    Lv, Feifan
    Li, Yu
    Lu, Feng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (07) : 2175 - 2193