Super Structure Fault-Tolerance Assessment of the Generalized Hypercube

被引:2
|
作者
Shu, Chang [1 ]
Wang, Yan [1 ]
Fan, Jianxi [1 ]
Wang, Guijuan [2 ,3 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Shandong Comp Sci Ctr, Natl Supercomp Ctr Jinan,Key Lab Comp Power Networ, Jinan 250353, Peoples R China
[3] Shandong Fundamental Res Ctr Comp Sci, Shandong Prov Key Lab Comp Networks, Jinan 250353, Peoples R China
来源
COMPUTER JOURNAL | 2024年 / 67卷 / 04期
基金
中国国家自然科学基金;
关键词
generalized hypercube; super structure fault-tolerance; structure connectivity; super connectivity; SUBSTRUCTURE CONNECTIVITY;
D O I
10.1093/comjnl/bxad072
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Fault-tolerant performance of a network is the prerequisite and guarantee for the normal operation of a network, which is often characterized by connectivity. Let H denote a connected subgraph of G and H-* denote the union of the set of all connected subgraphs of H and the set of the trivial graph. Super H-connectivity (resp. super H-*-connectivity) satisfies the conditions of both super connectivity and H-structure connectivity (resp. H-substructure connectivity). These two kinds of new connectivity provide a new metric to measure the fault-tolerance of the network, that is, the super structure fault-tolerance. The generalized hypercube G(m(r), m(r-1), ..., m(1)) is a universal topology of interconnection networks that contains other commonly used topologies and it has been applied in many data center networks because of its excellent qualities. In this paper, we research the super structure fault-tolerance of G(m(r), m(r-1), ..., m(1)) by studying super H-connectivity ?'(G|H) and super H-*-connectivity ?'(G|H-*) for H ? {K-1,K-M, C-3, C-4, K-4}.
引用
收藏
页码:1457 / 1466
页数:10
相关论文
共 50 条
  • [21] ON FAULT-TOLERANCE AND FAULT-AVOIDANCE
    REGULINSKI, TLD
    IEEE TRANSACTIONS ON RELIABILITY, 1987, 36 (02) : 161 - 161
  • [22] Star fault tolerance of hypercube
    Pan K.
    Theoretical Computer Science, 2023, 972
  • [23] HELLENIC FAULT-TOLERANCE FOR ROBOTS
    TOYE, G
    LEIFER, LJ
    COMPUTERS & ELECTRICAL ENGINEERING, 1994, 20 (06) : 479 - 497
  • [24] Simulation relations for fault-tolerance
    Demasi, Ramiro
    Castro, Pablo F.
    Maibaum, Thomas S. E.
    Aguirre, Nazareno
    FORMAL ASPECTS OF COMPUTING, 2017, 29 (06) : 1013 - 1050
  • [25] Fault-tolerance in a Boltzmann machine
    Price, CC
    Hanks, JB
    Stephens, JN
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 1326 - 1331
  • [26] Efficient Byzantine Fault-Tolerance
    Veronese, Giuliana Santos
    Correia, Miguel
    Bessani, Alysson Neves
    Lung, Lau Cheuk
    Verissimo, Paulo
    IEEE TRANSACTIONS ON COMPUTERS, 2013, 62 (01) : 16 - 30
  • [27] FAULT-TOLERANCE IN PARALLEL ARCHITECTURES
    SAMI, MG
    SCARABOTTOLO, N
    LECTURE NOTES IN COMPUTER SCIENCE, 1987, 272 : 349 - 372
  • [28] PARALLELISM AND FAULT-TOLERANCE IN THE CHORUS
    BANINO, JS
    JOURNAL OF SYSTEMS AND SOFTWARE, 1986, 6 (1-2) : 205 - 211
  • [29] Measuring Masking Fault-Tolerance
    Castro, Pablo F.
    D'Argenio, Pedro R.
    Demasi, Ramiro
    Putruele, Luciano
    TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, PT II, 2019, 11428 : 375 - 392
  • [30] HEALTHY FUTURE FOR FAULT-TOLERANCE
    不详
    COMPUTING SYSTEMS, 1991, 6 (02): : 125 - 125