Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network

被引:0
|
作者
Eom, Taeyoon [1 ]
Kim, Kwangnyun [1 ]
Jo, Yonghan [1 ]
Song, Keunyong [2 ]
Lee, Yunjeong [2 ]
Lee, Yun Gon [3 ]
机构
[1] Chungnam Natl Univ, Dept Astron Space Sci & Geol, Atmospher Sci, Daejeon, South Korea
[2] Korea Meteorol Adm, Climate Serv Dept, Seoul Metropolitan Off Meteorol, Suwon, South Korea
[3] Chungnam Natl Univ, Dept Astron Space Sci & Geol, Daejeon, South Korea
关键词
GK-2A; Air temperature; Land surface temperature; Machine learning; Deep neural network; FOG DETECTION; HEAT-WAVE; SATELLITE;
D O I
10.7780/kjrs.2023.39.2.7
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This study suggests deep neural network models for estimating air temperature with Level 1B (L1B) datasets of GEO-KOMPSAT-2A (GK-2A). The temperature at 1.5 m above the ground impact not only daily life but also weather warnings such as cold and heat waves. There are many studies to assume the air temperature from the land surface temperature (LST) retrieved from satellites because the air temperature has a strong relationship with the LST. However, an algorithm of the LST, Level 2 output of GK-2A, works only clear sky pixels. To overcome the cloud effects, we apply a deep neural network (DNN) model to assume the air temperature with L1B calibrated for radiometric and geometrics from raw satellite data and compare the model with a linear regression model between LST and air temperature. The root mean square errors (RMSE) of the air temperature for model outputs are used to evaluate the model. The number of 95 in-situ air temperature data was 2,496,634 and the ratio of datasets paired with LST and L1B show 42.1% and 98.4%. The training years are 2020 and 2021 and 2022 is used to validate. The DNN model is designed with an input layer taking 16 channels and four hidden fully connected layers to assume an air temperature. As a result of the model using 16 bands of L1B, the DNN with RMSE 2.22 degrees C showed great performance than the baseline model with RMSE 3.55 degrees C on clear sky conditions and the total RMSE including overcast samples was 3.33 degrees C. It is suggested that the DNN is able to overcome cloud effects. However, it showed different characteristics in seasonal and hourly analysis and needed to append solar information as inputs to make a general DNN model because the summer and winter seasons showed a low coefficient of determinations with high standard deviations.
引用
收藏
页码:207 / 221
页数:15
相关论文
共 50 条
  • [31] Artificial neural network estimation of global solar radiation using air temperature and relative humidity
    Rehman, Shafiqur
    Mohandes, Mohamed
    ENERGY POLICY, 2008, 36 (02) : 571 - 576
  • [32] SURFACE TEMPERATURE ESTIMATION USING ARTIFICIAL NEURAL NETWORK
    Veronez, M. R.
    Wittmann, G.
    Reinhardt, A. O.
    Da Silva, R. M.
    100 YEARS ISPRS ADVANCING REMOTE SENSING SCIENCE, PT 2, 2010, 38 : 612 - 617
  • [33] Air Quality Prediction Using a Deep Neural Network Model
    Cho, Kyunghak
    Lee, Byoung-Young
    Kwon, Myeongheum
    Kim, Seogcheol
    JOURNAL OF KOREAN SOCIETY FOR ATMOSPHERIC ENVIRONMENT, 2019, 35 (02) : 214 - 225
  • [34] DeepAir: Air Quality Prediction using Deep Neural Network
    Singh, Pratyush
    Narasimhan, Lakshmi T.
    Lakshminarayanan, Chandra Shekar
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 875 - 879
  • [35] Joint Torque Estimation Using sEMG and Deep Neural Network
    Harin Kim
    Hyeonjun Park
    Sangheum Lee
    Donghan Kim
    Journal of Electrical Engineering & Technology, 2020, 15 : 2287 - 2298
  • [36] Parameter Estimation for Dynamical Systems Using a Deep Neural Network
    Dufera, Tamirat Temesgen
    Seboka, Yadeta Chimdessa
    Fresneda Portillo, Carlos
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2022, 2022
  • [37] BLIND ESTIMATION OF REVERBERATION TIME USING DEEP NEURAL NETWORK
    Lee, Myungin
    Chang, Joon-Hyuk
    PROCEEDINGS OF 2016 5TH IEEE INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC 2016), 2016, : 308 - 311
  • [38] Joint Torque Estimation Using sEMG and Deep Neural Network
    Kim, Harin
    Park, Hyeonjun
    Lee, Sangheum
    Kim, Donghan
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2020, 15 (05) : 2287 - 2298
  • [39] Estimation of steady-state temperature field in Multichip Modules using deep convolutional neural network
    Hua, Yue
    Wang, Zhi-Qiao
    Yuan, Xin-Yi
    Li, Yu Bai
    Wu, Wei-Tao
    Aubry, Nadine
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2023, 40
  • [40] Wavelet Neural Network for Ground Resistance Estimation
    Androvitsaneas, Vasilios P.
    Gonos, Ioannis F.
    Stathopulos, Ioannis A.
    Alexandridis, Antonios K.
    Dounias, George
    2014 INTERNATIONAL CONFERENCE ON HIGH VOLTAGE ENGINEERING AND APPLICATION (ICHVE), 2014,