Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network

被引:0
|
作者
Eom, Taeyoon [1 ]
Kim, Kwangnyun [1 ]
Jo, Yonghan [1 ]
Song, Keunyong [2 ]
Lee, Yunjeong [2 ]
Lee, Yun Gon [3 ]
机构
[1] Chungnam Natl Univ, Dept Astron Space Sci & Geol, Atmospher Sci, Daejeon, South Korea
[2] Korea Meteorol Adm, Climate Serv Dept, Seoul Metropolitan Off Meteorol, Suwon, South Korea
[3] Chungnam Natl Univ, Dept Astron Space Sci & Geol, Daejeon, South Korea
关键词
GK-2A; Air temperature; Land surface temperature; Machine learning; Deep neural network; FOG DETECTION; HEAT-WAVE; SATELLITE;
D O I
10.7780/kjrs.2023.39.2.7
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This study suggests deep neural network models for estimating air temperature with Level 1B (L1B) datasets of GEO-KOMPSAT-2A (GK-2A). The temperature at 1.5 m above the ground impact not only daily life but also weather warnings such as cold and heat waves. There are many studies to assume the air temperature from the land surface temperature (LST) retrieved from satellites because the air temperature has a strong relationship with the LST. However, an algorithm of the LST, Level 2 output of GK-2A, works only clear sky pixels. To overcome the cloud effects, we apply a deep neural network (DNN) model to assume the air temperature with L1B calibrated for radiometric and geometrics from raw satellite data and compare the model with a linear regression model between LST and air temperature. The root mean square errors (RMSE) of the air temperature for model outputs are used to evaluate the model. The number of 95 in-situ air temperature data was 2,496,634 and the ratio of datasets paired with LST and L1B show 42.1% and 98.4%. The training years are 2020 and 2021 and 2022 is used to validate. The DNN model is designed with an input layer taking 16 channels and four hidden fully connected layers to assume an air temperature. As a result of the model using 16 bands of L1B, the DNN with RMSE 2.22 degrees C showed great performance than the baseline model with RMSE 3.55 degrees C on clear sky conditions and the total RMSE including overcast samples was 3.33 degrees C. It is suggested that the DNN is able to overcome cloud effects. However, it showed different characteristics in seasonal and hourly analysis and needed to append solar information as inputs to make a general DNN model because the summer and winter seasons showed a low coefficient of determinations with high standard deviations.
引用
收藏
页码:207 / 221
页数:15
相关论文
共 50 条
  • [1] Space Weather Magnetometer Aboard GEO-KOMPSAT-2A
    Magnes, W.
    Hillenmaier, O.
    Auster, H. -U.
    Brown, P.
    Kraft, S.
    Seon, J.
    Delva, M.
    Valavanoglou, A.
    Leitner, S.
    Fischer, D.
    Berghofer, G.
    Narita, Y.
    Plaschke, F.
    Volwerk, M.
    Wilfinger, J.
    Strauch, C.
    Ludwig, J.
    Constantinescu, D.
    Fornacon, K. -H.
    Gebauer, K.
    Hercik, D.
    Richter, I.
    Eastwood, J. P.
    Luntama, J. P.
    Hilgers, A.
    Heil, M.
    Na, G. W.
    Lee, C. H.
    SPACE SCIENCE REVIEWS, 2020, 216 (08)
  • [2] Space Weather Magnetometer Aboard GEO-KOMPSAT-2A
    W. Magnes
    O. Hillenmaier
    H.-U. Auster
    P. Brown
    S. Kraft
    J. Seon
    M. Delva
    A. Valavanoglou
    S. Leitner
    D. Fischer
    G. Berghofer
    Y. Narita
    F. Plaschke
    M. Volwerk
    J. Wilfinger
    C. Strauch
    J. Ludwig
    D. Constantinescu
    K.-H. Fornacon
    K. Gebauer
    D. Hercik
    I. Richter
    J. P. Eastwood
    J. P. Luntama
    A. Hilgers
    M. Heil
    G. W. Na
    C. H. Lee
    Space Science Reviews, 2020, 216
  • [3] Verification of GEO-KOMPSAT-2A AMI Radiometric Calibration Parameters Using an Evaluation Tool
    Jin, Kyoungwook
    Park, Jin-Hyung
    KOREAN JOURNAL OF REMOTE SENSING, 2020, 36 (06) : 1323 - 1337
  • [4] Lightning Detection Using GEO-KOMPSAT-2A/Advanced Meteorological Imager and Ground-Based Lightning Observation Sensor LINET Data
    Lee, Seung-Hee
    Suh, Myoung-Seok
    REMOTE SENSING, 2024, 16 (22)
  • [5] Surface Downward Longwave Radiation Retrieval Algorithm for GEO-KOMPSAT-2A/AMI
    Seo-Hee Ahn
    Kyu-Tae Lee
    Se-Hun Rim
    Il-Sung Zo
    Bu-Yo Kim
    Asia-Pacific Journal of Atmospheric Sciences, 2018, 54 : 237 - 251
  • [6] Functional and Performance Verification of the Space Weather Sensor on GEO-KOMPSAT-2A Satellite
    Jin, Kyoungwook
    KOREAN JOURNAL OF REMOTE SENSING, 2020, 36 (04) : 645 - 652
  • [7] GEO-KOMPSAT-2A AMI Best Detector Select Map Evaluation and Update
    Jin, Kyoungwook
    Lee, Sang-Cherl
    Lee, Jung-Hyun
    KOREAN JOURNAL OF REMOTE SENSING, 2021, 37 (02) : 359 - 365
  • [8] Surface Downward Longwave Radiation Retrieval Algorithm for GEO-KOMPSAT-2A/AMI
    Ahn, Seo-Hee
    Lee, Kyu-Tae
    Rim, Se-Hun
    Zo, Il-Sung
    Kim, Bu-Yo
    ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES, 2018, 54 (02) : 237 - 251
  • [9] Temperature Vegetation Dryness Index-Based Soil Moisture Retrieval Algorithm Developed for Geo-KOMPSAT-2A
    Ryu, Sumin
    Kwon, Young-Joo
    Kim, Goo
    Hong, Sungwook
    REMOTE SENSING, 2021, 13 (15)
  • [10] Correction to: Surface Downward Longwave Radiation Retrieval Algorithm for GEO-KOMPSAT-2A/AMI
    Seo-Hee Ahn
    Kyu-Tae Lee
    Se-Hun Rim
    Il-Sung Zo
    Bu-Yo Kim
    Asia-Pacific Journal of Atmospheric Sciences, 2018, 54 : 525 - 525