Network pharmacology-based strategy for predicting therapy targets of Ecliptae Herba on breast cancer

被引:13
|
作者
Li, Hui [1 ,2 ,3 ]
Shi, Wei [1 ,2 ,3 ]
Shen, Tingming [4 ]
Hui, Siwen [2 ,3 ]
Hou, Manting [2 ,3 ]
Wei, Ziying [1 ,2 ,3 ]
Qin, Shuanglin [5 ]
Bai, Zhaofang [2 ,3 ]
Cao, Junling [1 ,6 ]
机构
[1] Beijing Univ Chinese Med, Sch Chinese Mat Med, Beijing 102488, Peoples R China
[2] Chinese Peoples Liberat Army Gen Hosp, Med Ctr 5, Dept Hepatol, Beijing, Peoples R China
[3] Chinese Peoples Liberat Army Gen Hosp, China Mil Inst Chinese Mat, Med Ctr 5, Beijing, Peoples R China
[4] Ningde Hosp Tradit Chinese Med, Ningde, Peoples R China
[5] Hubei Univ Sci & Technol, Xianning Med Coll, Sch Pharm, Xianning, Peoples R China
[6] Beijing Univ Chinese Med, Dongzhimen Hosp, Luoyang Branch, Beijing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
breast cancer; Ecliptae Herba; molecular docking; network pharmacology; TGF-beta; 1; MESENCHYMAL TRANSITION; CELL-PROLIFERATION; STEM-CELLS; TGF-BETA; METASTASIS; RESOURCE; EXTRACT;
D O I
10.1097/MD.0000000000035384
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Breast cancer is a prevalent malignancy affecting women globally, characterized by significant morbidity and mortality rates. Ecliptae Herba is a traditional herbal medicine commonly used in clinical practice, has recently been found to possess antitumor properties. In order to explore the underlying material basis and molecular mechanisms responsible for the anti-breast cancer effects of Ecliptae Herba, we used network pharmacology and experimental verification. UPLC-MS/MS was utilized to identify compounds present in Ecliptae Herba. The active components of Ecliptae Herba and its breast cancer targets were screened using public databases. Hub genes were identified using the STRING and Metascape database. The R software was utilized for visual analysis of GO and KEGG pathways. The affinity of the hub targets for the active ingredients was assessed by molecular docking analysis, which was verified by experimental assessment. A total of 178 targets were obtained from the 10 active components of Ecliptae Herba, while 3431 targets associated with breast cancer were screened. There were 144 intersecting targets between the components and the disease. Targets with a higher degree, namely EGFR and TGFB1, were identified through the hub subnetwork of PPI. GO and KEGG analyses revealed that Ecliptae Herba plays an important role in multiple cancer therapeutic mechanisms. Moreover, molecular docking results showed that the core components had good binding affinity with key targets. Finally, it was confirmed that TGF-beta 1 might be a potential crucial target of Ecliptae Herba in the treatment of breast cancer by cytological experiments, and the TGF-beta 1/Smad signaling pathway might be an important pathway for Ecliptae Herba to exert its therapeutic effects. This study elucidated the active ingredients, key targets, and molecular mechanisms of Ecliptae Herba in the treatment of breast cancer, providing a scientific foundation and therapeutic mechanism for the prevention and treatment of breast cancer with Traditional Chinese medicine.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Network Pharmacology-based Prediction and Verification of Shikonin for Treating Colorectal Cancer
    Wang, Zefeng
    Cui, Qianfei
    Shi, Ling
    Zhang, Meiling
    Song, Peng
    Duan, Dongzhu
    Guo, Wenjing
    RECENT PATENTS ON ANTI-CANCER DRUG DISCOVERY, 2022, 17 (03) : 297 - 311
  • [42] Network Pharmacology-Based Prediction and Verification of the Potential Targets of Pinoresinol Diglucoside for OA Treatment
    Lou, Hongkan
    Zhang, Yang
    Fang, Jianli
    Jin, Yong
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [43] Deciphering the Key Pharmacological Pathways and Targets of Yisui Qinghuang Powder That Acts on Myelodysplastic Syndromes Using a Network Pharmacology-Based Strategy
    Han, Zijian
    Song, Luping
    Qi, Kele
    Ding, Yang
    Wei, Mingjun
    Jia, Yongcun
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2020, 2020
  • [44] Network pharmacology-based identification of the antitumor effects of taraxasterol in gastric cancer
    Chen, Wei
    Li, Jingwei
    Li, Chen
    Fan, Hui-Ning
    Zhang, Jing
    Zhu, Jin-Shui
    INTERNATIONAL JOURNAL OF IMMUNOPATHOLOGY AND PHARMACOLOGY, 2020, 34
  • [45] Network Pharmacology-Based Study on the Mechanism of Aloe Vera for Treating Cancer
    Xie, Jing
    Wu, Jun
    Yang, Sihui
    Zhou, Huaijun
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2021, 2021
  • [46] Network Pharmacology-Based Analysis on the Mechanism of Action of Ephedrae Herba-Cinnamomi Ramulus Couplet Medicines in the Treatment for Psoriasis
    Guo, Shun
    Zhou, Jin-Yong
    Tan, Cheng
    Shi, Le
    Shi, Yue
    Shi, Jianxin
    MEDICAL SCIENCE MONITOR, 2021, 27
  • [47] Network Pharmacology-Based Strategy to Investigate the Pharmacological Mechanisms of Ginkgo biloba Extract for Aging
    Liu, Yanfei
    Liu, Yue
    Zhang, Wantong
    Sun, Mingyue
    Weng, Weiliang
    Gao, Rui
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2020, 2020
  • [48] A Network Pharmacology-Based Study on Vital Pharmacological Pathways and Targets of Eucommiae Cortex Acting on Osteoporosis
    Zhou, Libo
    Wu, Tao
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [49] Network Pharmacology-based Strategy to Investigate Pharmacological Mechanisms of Qingbutongluo Pill for Treatment of Brucellosis
    Wang, Jing
    He, Jia-Wei
    Liu, Ji-Shan
    Li, Jian-E
    Cui, Qing-You
    Wang, Yi-Rui
    Zhou, Wei-Gang
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2023, 26 (04) : 706 - 718
  • [50] Network pharmacology-based prediction and verification of the molecular targets and pathways for schisandrin against cerebrovascular disease
    LV Yan-Ni
    LI Shao-Xia
    ZHAI Ke-Feng
    KOU Jun-Ping
    YU Bo-Yang
    Chinese Journal of Natural Medicines, 2014, 12 (04) : 251 - 258