Poisson average maximum likelihood-centered penalized estimator: A new estimator to better address multicollinearity in Poisson regression

被引:3
|
作者
Li, Sheng [1 ,2 ]
Wang, Wei [1 ,2 ]
Yao, Menghan [1 ,2 ]
Wang, Junyu [1 ,2 ]
Du, Qianqian [1 ,2 ]
Li, Xuelin [1 ,2 ]
Tian, Xinyue [1 ,2 ]
Zeng, Jing [3 ]
Deng, Ying [3 ]
Zhang, Tao [1 ,2 ,4 ]
Yin, Fei [1 ]
Ma, Yue [1 ,2 ,4 ]
机构
[1] Sichuan Univ, West China Sch Publ Hlth, Dept Epidemiol & Biostat, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp 4, Chengdu, Peoples R China
[3] Sichuan Ctr Dis Control & Prevent, Dept Chron Dis Surveillance, Chengdu, Peoples R China
[4] Sichuan Univ, Inst Syst Epidemiol, West China Sch Publ Hlth, Chengdu, Peoples R China
关键词
multicollinearity; Poisson penalized estimator; Poisson regression; shrinkage center; LIU-TYPE ESTIMATOR; RIDGE-REGRESSION;
D O I
10.1111/stan.12313
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Poisson ridge estimator (PRE) is a commonly used parameter estimation method to address multicollinearity in Poisson regression (PR). However, PRE shrinks the parameters toward zero, contradicting the real association. In such cases, PRE tends to become an insufficient solution for multicollinearity. In this work, we proposed a new estimator called the Poisson average maximum likelihood-centered penalized estimator (PAMLPE), which shrinks the parameters toward the weighted average of the maximum likelihood estimators. We conducted a simulation study and case study to compare PAMLPE with existing estimators in terms of mean squared error (MSE) and predictive mean squared error (PMSE). These results suggest that PAMLPE can obtain smaller MSE and PMSE (i.e., more accurate estimates) than the Poisson ridge estimator, Poisson Liu estimator, and Poisson K-L estimator when the true & beta;$$ \beta $$s have the same sign and small variation. Therefore, we recommend using PAMLPE to address multicollinearity in PR when the signs of the true & beta;$$ \beta $$s are known to be identical in advance.
引用
收藏
页码:208 / 227
页数:20
相关论文
共 36 条