Poisson average maximum likelihood-centered penalized estimator: A new estimator to better address multicollinearity in Poisson regression

被引:3
|
作者
Li, Sheng [1 ,2 ]
Wang, Wei [1 ,2 ]
Yao, Menghan [1 ,2 ]
Wang, Junyu [1 ,2 ]
Du, Qianqian [1 ,2 ]
Li, Xuelin [1 ,2 ]
Tian, Xinyue [1 ,2 ]
Zeng, Jing [3 ]
Deng, Ying [3 ]
Zhang, Tao [1 ,2 ,4 ]
Yin, Fei [1 ]
Ma, Yue [1 ,2 ,4 ]
机构
[1] Sichuan Univ, West China Sch Publ Hlth, Dept Epidemiol & Biostat, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp 4, Chengdu, Peoples R China
[3] Sichuan Ctr Dis Control & Prevent, Dept Chron Dis Surveillance, Chengdu, Peoples R China
[4] Sichuan Univ, Inst Syst Epidemiol, West China Sch Publ Hlth, Chengdu, Peoples R China
关键词
multicollinearity; Poisson penalized estimator; Poisson regression; shrinkage center; LIU-TYPE ESTIMATOR; RIDGE-REGRESSION;
D O I
10.1111/stan.12313
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Poisson ridge estimator (PRE) is a commonly used parameter estimation method to address multicollinearity in Poisson regression (PR). However, PRE shrinks the parameters toward zero, contradicting the real association. In such cases, PRE tends to become an insufficient solution for multicollinearity. In this work, we proposed a new estimator called the Poisson average maximum likelihood-centered penalized estimator (PAMLPE), which shrinks the parameters toward the weighted average of the maximum likelihood estimators. We conducted a simulation study and case study to compare PAMLPE with existing estimators in terms of mean squared error (MSE) and predictive mean squared error (PMSE). These results suggest that PAMLPE can obtain smaller MSE and PMSE (i.e., more accurate estimates) than the Poisson ridge estimator, Poisson Liu estimator, and Poisson K-L estimator when the true & beta;$$ \beta $$s have the same sign and small variation. Therefore, we recommend using PAMLPE to address multicollinearity in PR when the signs of the true & beta;$$ \beta $$s are known to be identical in advance.
引用
收藏
页码:208 / 227
页数:20
相关论文
共 36 条
  • [1] Logistic average maximum likelihood-centered penalized estimator: a new estimator to better address multicollinearity in Logistic regression
    Li, Sheng
    Wang, Wei
    Du, Qianqian
    Wang, Junyu
    Yao, Menghan
    Tian, Xinyue
    Li, Xuelin
    Zeng, Jing
    Deng, Ying
    Zhang, Tao
    Yin, Fei
    Ma, Yue
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2025,
  • [2] A local maximum likelihood estimator for Poisson regression
    José António Santos
    M. Manuela Neves
    Metrika, 2008, 68 : 257 - 270
  • [3] A local maximum likelihood estimator for Poisson regression
    Santos, Jose Antonio
    Neves, M. Manuela
    METRIKA, 2008, 68 (03) : 257 - 270
  • [4] Reducing the bias of the maximum likelihood estimator for the Poisson regression model
    Giles, David E.
    Feng, Hui
    ECONOMICS BULLETIN, 2011, 31 (04): : 2933 - 2943
  • [5] A new linearized ridge Poisson estimator in the presence of multicollinearity
    Jadhav, Nileshkumar H.
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (08) : 2016 - 2034
  • [6] A New Ridge Estimator for the Poisson Regression Model
    Nadwa K. Rashad
    Zakariya Yahya Algamal
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 2921 - 2928
  • [7] A New Ridge Estimator for the Poisson Regression Model
    Rashad, Nadwa K.
    Algamal, Zakariya Yahya
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A6): : 2921 - 2928
  • [8] Robust modified jackknife ridge estimator for the Poisson regression model with multicollinearity and outliers
    Arum, Kingsley C.
    Ugwuowo, Fidelis, I
    Oranye, Henrietta E.
    SCIENTIFIC AFRICAN, 2022, 17
  • [9] Asymptotic properties of a double penalized maximum likelihood estimator in logistic regression
    Gao, Sujuan
    Shen, Jianzhao
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (09) : 925 - 930
  • [10] Finite-Sample Properties of the Maximum Likelihood Estimator for the Poisson Regression Model With Random Covariates
    Chen, Qian
    Giles, David E.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (06) : 1000 - 1014