An Ion-Pumping Interphase on Graphdiyne/Graphite Heterojunction for Fast-Charging Lithium-Ion Batteries

被引:29
|
作者
An, Juan [1 ]
Wang, Fan [1 ]
Yang, Jia-Yue [2 ]
Li, Guoxing [1 ]
Li, Yuliang [1 ,3 ,4 ]
机构
[1] Shandong Univ, Sci Ctr Mat Creat & Energy Convers, Sch Chem & Chem Engn, Shandong Prov Key Lab Sci Mat Creat & Energy Conve, Qingdao 266237, Peoples R China
[2] Shandong Univ, Inst Frontier & Interdisciplinary Sci, Opt & Thermal Radiat Res Ctr, Qingdao 266237, Peoples R China
[3] Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
CCS CHEMISTRY | 2024年 / 6卷 / 01期
关键词
HIGH-POWER; GRAPHITE; CARBON; ELECTROLYTE; PERFORMANCE; CHALLENGES; ANODE;
D O I
10.31635/ccschem.023.202302710
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The sluggish lithium-ion (Li-ion) transport kinetics in graphite anode hinders its application in fast-charging Li-ion batteries (LIBs). Here, we develop an ion pumping interphase (IPI) on graphdiyne (GDY)/ graphite heterojunction anodes to boost the ionic transport kinetics and enable high-performance, fast-charging LIBs. The IPI changed the ion solvation/desolvation environment by covalent/non-covalent interactions with Li ions or solvents to optimize solid-electrolyte interphase (SEI) and regulate Li-ion transport behavior. We studied the in situ growth of few-layer GDY on graphite surface (GDY/graphite) as the IPI and found that the strong interaction between GDY and Li ions enabled surface-induced modification of the ion solvation behavior and surface-assisted desolvation effect to accelerate the Li-ion desolvation process. A functional anion-derived SEI layer with improved Li-ion conductivity was created. Together with the generated built-in electric field at GDY/ graphite hetero-interface self-pumping Li ions to intercalate into the graphite, the Li-ion transport kinetics was significantly enhanced to effectively eliminate Li plating and large voltage polarization of the graphite anodes. A fast Li intercalation in GDY/graphitewithout Li oversaturation at the edge of the graphite was directly observed. The superior performance with high capacity (139.2 mA h g-1) and long lifespan (1650 cycles) under extremely fast-charging conditions (20 C, 1 C = 372 mA g-1) was achieved on GDY/ graphite anodes. Even at low temperatures (-20 degrees C), a specific capacity of 128.4 mA h g-1 was achieved with a capacity retention of 80% after 500 cycles at a 2 C rate.
引用
收藏
页码:110 / 124
页数:15
相关论文
共 50 条
  • [21] Porous current collector for fast-charging lithium-ion batteries
    Cui, Yi
    Ye, Yusheng
    NATURE ENERGY, 2024, 9 (06): : 639 - 640
  • [22] A Review on Electrode Materials of Fast-Charging Lithium-Ion batteries
    Zhang, Zhen
    Zhao, Decheng
    Xu, Yuanyuan
    Liu, Shupei
    Xu, Xiangyu
    Zhou, Jian
    Gao, Fei
    Tang, Hao
    Wang, Zhoulu
    Wu, Yutong
    Liu, Xiang
    Zhang, Yi
    CHEMICAL RECORD, 2022, 22 (10):
  • [23] Introducing a Pseudocapacitive Lithium Storage Mechanism into Graphite by Defect Engineering for Fast-Charging Lithium-Ion Batteries
    Wang, Mengmeng
    Wang, Junru
    Xiao, Jingchao
    Ren, Naiqing
    Pan, Bicai
    Chen, Chu-sheng
    Chen, Chun-hua
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (14) : 16279 - 16288
  • [24] Introducing a Pseudocapacitive Lithium Storage Mechanism into Graphite by Defect Engineering for Fast-Charging Lithium-Ion Batteries
    Wang, Mengmeng
    Wang, Junru
    Xiao, Jingchao
    Ren, Naiqing
    Pan, Bicai
    Chen, Chu-Sheng
    Chen, Chun-Hua
    ACS Applied Materials and Interfaces, 2022, 14 (14): : 16279 - 16288
  • [25] Introducing Ionic Transport Islands in Graphite Anode towards Fast-Charging Lithium-Ion Batteries
    Yu, Honggang
    Zhang, Yidan
    Zhao, Fenggang
    Li, Zhen
    Huang, Yunhui
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (07)
  • [26] Enabling fast-charging of lithium-ion batteries through printed electrodes
    Wang, Guanyi
    Xiong, Jie
    Zhou, Bingyao
    Palaniappan, Valliammai
    Emani, Himanaga
    Mathew, Kevin
    Kornyo, Emmanuel
    Tay, Zachary
    Hanson, Tony Joseph
    Maddipatla, Dinesh
    Zhang, Guoxin
    Atashbar, Massood
    Lu, Wenquan
    Wu, Qingliu
    ELECTROCHIMICA ACTA, 2025, 514
  • [27] A disordered rock salt anode for fast-charging lithium-ion batteries
    Liu, Haodong
    Zhu, Zhuoying
    Yan, Qizhang
    Yu, Sicen
    He, Xin
    Chen, Yan
    Zhang, Rui
    Ma, Lu
    Liu, Tongchao
    Li, Matthew
    Lin, Ruoqian
    Chen, Yiming
    Li, Yejing
    Xing, Xing
    Choi, Yoonjung
    Gao, Lucy
    Cho, Helen Sung-yun
    An, Ke
    Feng, Jun
    Kostecki, Robert
    Amine, Khalil
    Wu, Tianpin
    Lu, Jun
    Xin, Huolin L.
    Ong, Shyue Ping
    Liu, Ping
    NATURE, 2020, 585 (7823) : 63 - +
  • [28] A disordered rock salt anode for fast-charging lithium-ion batteries
    Haodong Liu
    Zhuoying Zhu
    Qizhang Yan
    Sicen Yu
    Xin He
    Yan Chen
    Rui Zhang
    Lu Ma
    Tongchao Liu
    Matthew Li
    Ruoqian Lin
    Yiming Chen
    Yejing Li
    Xing Xing
    Yoonjung Choi
    Lucy Gao
    Helen Sung-yun Cho
    Ke An
    Jun Feng
    Robert Kostecki
    Khalil Amine
    Tianpin Wu
    Jun Lu
    Huolin L. Xin
    Shyue Ping Ong
    Ping Liu
    Nature, 2020, 585 : 63 - 67
  • [29] Application of Spectroscopic Techniques in the Development of Fast-Charging Lithium-Ion Batteries
    Cheng, Xin
    Zhao, Jingteng
    Xiao, Huang
    Song, Congying
    Li, Fang
    Li, Guoxing
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (44): : 18678 - 18694
  • [30] Fast-Charging Lithium-Ion Batteries Enabled by Magnetically Aligned Electrodes
    Ju, Zhengyu
    Zheng, Tianrui
    Checko, Shane
    Yu, Guihua
    ACS NANO, 2025, 19 (05) : 5688 - 5698