New stochastic fractional integral and related inequalities of Jensen-Mercer and Hermite-Hadamard-Mercer type for convex stochastic processes

被引:7
|
作者
Jarad, Fahd [1 ,2 ]
Sahoo, Soubhagya Kumar [3 ]
Nisar, Kottakkaran Sooppy [4 ]
Treanta, Savin [5 ,6 ,7 ]
Emadifar, Homan [8 ]
Botmart, Thongchai [9 ]
机构
[1] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkiye
[2] China Med Univ, China Med Univ Hosp, Taichung 40402, Taiwan
[3] CV Raman Global Univ, Dept Math, Bhubaneswar 752054, Orissa, India
[4] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities Alkharj, Dept Math, Wadi Alkharj 11942, Saudi Arabia
[5] Univ Politehn Bucuresti, Dept Appl Math, Bucharest 060042, Romania
[6] Acad Romanian Scientists, 54 Splaiul Independentei, Bucharest 050094, Romania
[7] Univ Politehn Bucuresti, Fundamental Sci Appl Engn Res Ctr SFAI, Bucharest 060042, Romania
[8] Islamic Azad Univ, Dept Math, Hamedan Branch, Hamadan, Iran
[9] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
关键词
Convex stochastic process; Hermite-Hadamard-Mercer inequality; Fractional integral operator; Exponential kernel; APPROXIMATIONS;
D O I
10.1186/s13660-023-02944-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this investigation, we unfold the Jensen-Mercer (J - M) inequality for convex stochastic processes via a new fractional integral operator. The incorporation of convex stochastic processes, the J - M inequality and a fractional integral operator having an exponential kernel brings a new direction to the theory of inequalities. With this in mind, estimations of Hermite-Hadamard-Mercer (H - H - M)-type fractional inequalities involving convex stochastic processes are presented. In the context of the new fractional integral operator, we also investigate a novel identity for differentiable mappings. Then, a new related H - H - M-type inequality is presented using this identity as an auxiliary result. Applications to special means and matrices are also presented. These findings are particularly appealing from the perspective of optimization, as they provide a larger context to analyze optimization and mathematical programming problems.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator
    Liu, Jia-Bao
    Butt, Saad Ihsan
    Nasir, Jamshed
    Aslam, Adnan
    Fahad, Asfand
    Soontharanon, Jarunee
    AIMS MATHEMATICS, 2022, 7 (02): : 2123 - 2140
  • [22] Generalized Hermite-Hadamard-Mercer Type Inequalities via Majorization
    Faisal, Shah
    Khan, Muhammad Adil
    Iqbal, Sajid
    FILOMAT, 2022, 36 (02) : 469 - 483
  • [23] On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals
    Abdeljawad, Thabet
    Ali, Muhammad Aamir
    Mohammed, Pshtiwan Othman
    Kashuri, Artion
    AIMS MATHEMATICS, 2021, 6 (01): : 712 - 725
  • [24] Jensen-Mercer Type Inequalities in the Setting of Fractional Calculus with Applications
    Bin-Mohsin, Bandar
    Javed, Muhammad Zakria
    Awan, Muhammad Uzair
    Mihai, Marcela, V
    Budak, Huseyin
    Khan, Awais Gul
    Noor, Muhammad Aslam
    SYMMETRY-BASEL, 2022, 14 (10):
  • [25] Hermite-Hadamard, Jensen, and Fractional Integral Inequalities for Generalized P-Convex Stochastic Processes
    Ma, Fangfang
    Nazeer, Waqas
    Ghafoor, Mamoona
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [26] New midpoint type Hermite-Hadamard-Mercer inequalities pertaining to Caputo-Fabrizio fractional operators
    Sahoo, Soubhagya Kumar
    Hamed, Y. S.
    Mohammed, Pshtiwan Othman
    Kodamasingh, Bibhakar
    Nonlaopon, Kamsing
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 65 : 689 - 698
  • [27] Jensen-Mercer Type Inequalities for Operator h-Convex Functions
    Abbasi, Mostafa
    Morassaei, Ali
    Mirzapour, Farzollah
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) : 2441 - 2462
  • [28] REVERSE JENSEN-MERCER TYPE OPERATOR INEQUALITIES
    Anjidani, Ehsan
    Chancalvaiy, Mohammad Reza
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2016, 31 : 87 - 99
  • [29] Inequalities of the Type Hermite-Hadamard-Jensen-Mercer for Strong Convexity
    Khan, Muhammad Adil
    Anwar, Saeed
    Khalid, Sadia
    Sayed, Zaid Mohammed Mohammed Mahdi
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [30] Generalized Jensen and Jensen-Mercer inequalities for strongly convex functions with applications
    Bradanovic, Slavica Ivelic
    Lovricevic, Neda
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):