Low-Carbon Economic Dispatch of Integrated Electricity-Gas Energy System Considering Carbon Capture, Utilization and Storage

被引:15
|
作者
Liu, Xinghua [1 ]
Li, Xiang [1 ]
Tian, Jiaqiang [2 ]
Yang, Guoqing [1 ]
Wu, Huibao [3 ]
Ha, Rong [4 ]
Wang, Peng [5 ]
机构
[1] Xian Univ Technol, Sch Elect Engn, Xian 710048, Peoples R China
[2] Anhui Univ, Sch Elect Engn & Automat, Hefei 230039, Peoples R China
[3] State Grid Xian Elect Power Supply Co, Xian 710000, Peoples R China
[4] Xian Jinze Elect Technol Co Ltd, Xian 710100, Peoples R China
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
Carbon dioxide; Emissions trading; Power systems; Natural gas; Combustion; Biological system modeling; Mathematical models; Low-carbon electricity; integrated electricity-gas system (IEGS); economic dispatch; carbon capture; utilization and storage (CCUS); mixed integer linear programming (MILP); POWER; STRATEGY;
D O I
10.1109/ACCESS.2023.3255508
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of modern industry, while improving people's living standards, the over-exploitation of coal, oil and natural gas has led to a shortage of fossil energy, global warming and an increasingly serious deterioration of the ecological environment. To mitigate the greenhouse effect caused by excessive carbon emissions, the vigorous development of integrated electricity-gas system (IEGS) dominated by clean energy is the future trend of sustainable development of energy systems. In this paper, a bi-level optimal scheduling model is proposed for an IEGS considering carbon capture, utilization and storage (CCUS), and the ladder carbon trading mechanism is introduced to convert carbon emissions into economic benefits. The upper model is an optimal distribution model of natural gas network, and the lower model is a day-ahead economic dispatch model of power system. Based on the Karush-Kuhn-Tucher (KKT) condition and strong duality theory of the lower model, the bi-level model is transformed into a mixed integer linear programming (MILP), which is solved by calling CPLEX through the Yalmip toolbox of the Matlab platform. Finally, the reasonableness and validity of the model are verified by three arithmetic simulations. The results show that the proposed bi-level model for low-carbon economic dispatch of IEGS considering CCUS can effectively reduce the operating costs and carbon emissions of the system.
引用
收藏
页码:25077 / 25089
页数:13
相关论文
共 50 条
  • [41] Low-carbon optimal scheduling of integrated energy system considering hydrogen energy storage, ammonia production and carbon capture
    Liang, Junpeng
    Zhang, Gaohang
    Li, Fengting
    Xie, Chao
    Wang, Ting
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2024, 44 (10): : 16 - 23
  • [42] Low-carbon economic dispatch of integrated energy system considering carbon trading mechanism and LAES-ORC-CHP system
    Zhou, Wei
    Sun, Yonghui
    Zong, Xuanjun
    Zhou, Hongwei
    Zou, Sheng
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [43] Optimal dispatch of low-carbon integrated energy system considering nuclear heating and carbon trading
    Li, Yang
    Bu, Fanjin
    Gao, Jiankai
    Li, Guoqing
    JOURNAL OF CLEANER PRODUCTION, 2022, 378
  • [44] Low-carbon economic dispatch strategy for microgrids considering stepwise carbon trading and generalized energy storage
    Wang, Yong
    Song, Zhuoran
    Tong, Yongji
    Dou, Wenlei
    Lu, Sichen
    Jiang, Tao
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2024, 16 (04)
  • [45] Low-carbon economic multi-objective dispatch of integrated energy system considering the price fluctuation of natural gas and carbon emission accounting
    Minglei Qin
    Yongbiao Yang
    Xianqiu Zhao
    Qingshan Xu
    Li Yuan
    Protection and Control of Modern Power Systems, 2023, 8
  • [46] Low-carbon economic multi-objective dispatch of integrated energy system considering the price fluctuation of natural gas and carbon emission accounting
    Qin, Minglei
    Yang, Yongbiao
    Zhao, Xianqiu
    Xu, Qingshan
    Yuan, Li
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2023, 8 (01)
  • [47] LOW-CARBON ECONOMIC DISPATCH OPTIMIZATION OF INTEGRATED ENERGY SYSTEM CONSIDERING FORWARD-LOOKING RISKS
    Zhu X.
    Jiang Q.
    Zhong Y.
    Yao X.
    Liu M.
    Luo H.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (06): : 113 - 121
  • [48] Low carbon dispatch of electricity-gas-thermal-storage integrated energy system based on stepped carbon trading
    Guo, Rui
    Ye, Hanwen
    Zhao, Yan
    ENERGY REPORTS, 2022, 8 : 449 - 455
  • [49] Low carbon economic dispatch of integrated energy systems considering utilization of hydrogen and oxygen energy
    Wu, Min
    Wu, Zhuo
    Shi, Zhenglu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 158
  • [50] Low-carbon Economic Dispatch of Integrated Electricity-Heat-Hydrogen Systems Considering Integrated Demand Response
    Liu, Zesan
    Yang, Miao
    Jia, Wenhao
    Ding, Tao
    2022 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (I&CPS ASIA 2022), 2022, : 1173 - 1177