On chromatic symmetric homology and planarity of graphs

被引:2
|
作者
Ciliberti, Azzurra [1 ]
Moci, Luca [2 ]
机构
[1] Univ Roma La Sapienza, Dept Math, Rome, Italy
[2] Univ Bologna, Dept Math, Bologna, Italy
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2023年 / 30卷 / 01期
关键词
D O I
10.37236/11397
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sazdanovic and Yip (2018) defined a categorification of Stanley's chromatic sym-metric function called the chromatic symmetric homology, given by a suitable family of representations of the symmetric group. In this paper we prove that, as conjec-tured by Chandler, Sazdanovic, Stella and Yip (2019), if a graph G is non-planar, then its chromatic symmetric homology in bidegree (1,0) contains Z2-torsion. Our proof follows a recursive argument based on Kuratowsky's theorem.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [41] ON PLANARITY OF GRAPHS IN 3-MANIFOLDS
    WU, YQ
    COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (04) : 635 - 647
  • [42] AN ALGORITHM FOR TESTING PLANARITY OF HIERARCHICAL GRAPHS
    DIBATTISTA, G
    NARDELLI, E
    LECTURE NOTES IN COMPUTER SCIENCE, 1987, 246 : 277 - 289
  • [43] Computing Planarity in Computable Planar Graphs
    Levin, Oscar
    McMillan, Taylor
    GRAPHS AND COMBINATORICS, 2016, 32 (06) : 2525 - 2539
  • [44] Testing Planarity of Partially Embedded Graphs
    Angelini, Patrizio
    Di Battista, Giuseppe
    Frati, Fabrizio
    Jelinek, Vit
    Kratochvil, Jan
    Patrignani, Maurizio
    Rutter, Ignaz
    ACM TRANSACTIONS ON ALGORITHMS, 2015, 11 (04)
  • [45] A planarity criterion for cubic bipartite graphs
    Bohme, T
    Harant, J
    Pruchnewski, A
    Schiermeyer, I
    DISCRETE MATHEMATICS, 1998, 191 (1-3) : 31 - 43
  • [46] Computing Planarity in Computable Planar Graphs
    Oscar Levin
    Taylor McMillan
    Graphs and Combinatorics, 2016, 32 : 2525 - 2539
  • [47] PLANARITY OF INTERSECTION GRAPHS OF IDEALS OF RINGS
    Jafari, Sayyed Heidar
    Rad, Nader Jafari
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2010, 8 : 161 - 166
  • [48] Characterizing planarity using theta graphs
    Archdeacon, D
    Siran, J
    JOURNAL OF GRAPH THEORY, 1998, 27 (01) : 17 - 20
  • [49] BIPARTITE GRAPHS, UPWARD DRAWINGS, AND PLANARITY
    DIBATTISTA, G
    LIU, WP
    RIVAL, I
    INFORMATION PROCESSING LETTERS, 1990, 36 (06) : 317 - 322
  • [50] Testing Planarity of Partially Embedded Graphs
    Angelini, Patrizio
    Di Battista, Giuseppe
    Frati, Fabrizio
    Jelinek, Vit
    Kratochvil, Jan
    Patrignani, Maurizio
    Rutter, Ignaz
    PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2010, 135 : 202 - +