Single-cell gene regulatory network prediction by explainable AI

被引:23
|
作者
Keyl, Philipp [1 ,2 ,3 ]
Bischoff, Philip [1 ,2 ,3 ,4 ,5 ]
Dernbach, Gabriel [1 ,2 ,3 ,6 ]
Bockmayr, Michael [1 ,2 ,3 ,7 ,8 ]
Fritz, Rebecca [1 ,2 ,3 ]
Horst, David [1 ,2 ,3 ,5 ]
Bluethgen, Nils [1 ,2 ,3 ,9 ]
Montavon, Gregoire [6 ,10 ]
Mueller, Klaus-Robert [6 ,10 ,11 ,12 ]
Klauschen, Frederick [1 ,2 ,3 ,5 ,6 ,13 ,14 ]
机构
[1] Charite Univ Med Berlin, Inst Pathol, Charitepl 1, D-10117 Berlin, Germany
[2] Free Univ Berlin, Charitepl 1, D-10117 Berlin, Germany
[3] Humboldt Univ, Charitepl 1, D-10117 Berlin, Germany
[4] Charite Univ Med Berlin, Berlin Inst Hlth, Anna Louisa Karsch Str 2, D-10178 Berlin, Germany
[5] German Canc Res Ctr, German Canc Consortium DKTK, Berlin Partner Site, Berlin, Germany
[6] BIFOLD Berlin Inst Fdn Learning & Data, Berlin, Germany
[7] Univ Med Ctr Hamburg Eppendorf, Dept Pediat Hematol & Oncolog, Martinistr 52, D-20246 Hamburg, Germany
[8] Univ Med Ctr Hamburg Eppendorf, Mildred Scheel Canc Career Ctr HaTriCS4, Martinistr 52, D-20246 Hamburg, Germany
[9] Humboldt Univ, Free Univ Berlin, Inst Biol, Unter Linden 6, D-10099 Berlin, Germany
[10] Tech Univ Berlin, Machine Learning Grp, Marchstr 23, D-10587 Berlin, Germany
[11] Korea Univ, Dept Artificial Intelligence, Seoul 136713, South Korea
[12] Max Planck Inst Informat, Stuhlsatzenhausweg 4, D-66123 Saarbrucken, Germany
[13] Ludwig Maximilians Univ Munchen, Inst Pathol, Thalkirchner Str 36, D-80337 Munich, Germany
[14] German Canc Res Ctr, German Canc Consortium DKTK, Munich Partner Site, Munich, Germany
关键词
CANCER; HETEROGENEITY; EXPRESSION; MUTATIONS;
D O I
10.1093/nar/gkac1212
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The molecular heterogeneity of cancer cells contributes to the often partial response to targeted therapies and relapse of disease due to the escape of resistant cell populations. While single-cell sequencing has started to improve our understanding of this heterogeneity, it offers a mostly descriptive view on cellular types and states. To obtain more functional insights, we propose scGeneRAI, an explainable deep learning approach that uses layer-wise relevance propagation (LRP) to infer gene regulatory networks from static single-cell RNA sequencing data for individual cells. We benchmark our method with synthetic data and apply it to single-cell RNA sequencing data of a cohort of human lung cancers. From the predicted single-cell networks our approach reveals characteristic network patterns for tumor cells and normal epithelial cells and identifies subnetworks that are observed only in (subgroups of) tumor cells of certain patients. While current state-of-the-art methods are limited by their ability to only predict average networks for cell populations, our approach facilitates the reconstruction of networks down to the level of single cells which can be utilized to characterize the heterogeneity of gene regulation within and across tumors.
引用
收藏
页码:E20 / E20
页数:14
相关论文
共 50 条
  • [41] Gene-regulatory network analysis of ankylosing spondylitis with a single-cell chromatin accessible assay
    Haiyan Yu
    Hongwei Wu
    Fengping Zheng
    Chengxin Zhu
    Lianghong Yin
    Weier Dai
    Dongzhou Liu
    Donge Tang
    Xiaoping Hong
    Yong Dai
    Scientific Reports, 10
  • [42] LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data
    Li, Lingyu
    Sun, Liangjie
    Chen, Guangyi
    Wong, Chi-Wing
    Ching, Wai-Ki
    Liu, Zhi-Ping
    BIOINFORMATICS, 2023, 39 (05)
  • [43] MOSim: bulk and single-cell multilayer regulatory network simulator
    Monzo, Carolina
    Aguerralde-Martin, Maider
    Martinez-Mira, Carlos
    Arzalluz-Luque, Angeles
    Conesa, Ana
    Tarazona, Sonia
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (02)
  • [44] SIGNET: single-cell RNA-seq-based gene regulatory network prediction using multiple-layer perceptron bagging
    Luo, Qinhuan
    Yu, Yongzhen
    Lan, Xun
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [45] A single-cell multimodal view on gene regulatory network inference from transcriptomics and chromatin accessibility data
    Loers, Jens Uwe
    Vermeirssen, Vanessa
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (05)
  • [46] scMEGA: single-cell multi-omic enhancer-based gene regulatory network inference
    Li, Zhijian
    Nagai, James S.
    Kuppe, Christoph
    Kramann, Rafael
    Costa, Ivan G.
    BIOINFORMATICS ADVANCES, 2023, 3 (01):
  • [47] Single-Cell CRISPR Screening Is a Powerful Tool for Gene Regulatory Network Studies in Kidney Collecting Ducts
    Cao Shuang
    Lopez-Cayuqueo, Karen, I
    Schmidt-Ott, Kai M.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2024, 35 (10):
  • [48] MetaSEM: Gene Regulatory Network Inference from Single-Cell RNA Data by Meta-Learning
    Zhang, Yongqing
    Wang, Maocheng
    Wang, Zixuan
    Liu, Yuhang
    Xiong, Shuwen
    Zou, Quan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (03)
  • [49] Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments
    Jackson, Christopher A.
    Castro, Dayanne M.
    Saldi, Giuseppe-Antonio
    Bonneau, Richard
    Gresham, David
    ELIFE, 2020, 9
  • [50] Inferring gene regulatory network from single-cell transcriptomic data by integrating multiple prior networks
    Gan, Yanglan
    Xin, Yongchang
    Hu, Xin
    Zou, Guobing
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2021, 93 (93)