Micromodification of the Catalyst Layer by CO to Increase Pt Utilization for Proton-Exchange Membrane Fuel Cells

被引:6
|
作者
Wen, Zengyin [1 ]
Wu, Duojie [1 ]
Banham, Dustin [2 ,3 ,4 ]
Chen, Ming [5 ]
Sun, Fengman [6 ]
Zhao, Zhiliang [1 ]
Jin, Yiqi [1 ]
Fan, Li [1 ]
Xu, Shaoyi [1 ,7 ]
Gu, Meng [1 ]
Fan, Jiantao [7 ,8 ]
Li, Hui [1 ,9 ,10 ]
机构
[1] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[2] Foshan Univ, Sch Mat Sci & Hydrogen Energy, Foshan 528000, Peoples R China
[3] Guangdong Key Lab Hydrogen Energy Technol, Foshan 528000, Peoples R China
[4] Guangdong TaiJi Power, Foshan 528000, Peoples R China
[5] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
[6] Harbin Inst Technol, Harbin 150001, Peoples R China
[7] Southern Univ Sci & Technol, Acad Adv Interdisciplinary Studies, Shenzhen 518055, Guangdong, Peoples R China
[8] Southern Univ Sci & Technol, Guangdong Prov Key Lab Energy Mat Elect Power, Shenzhen 518055, Peoples R China
[9] Southern Univ Sci & Technol, Key Univ Lab Highly Efficient Utilizat Solar Ener, Shenzhen 518055, Peoples R China
[10] Southern Univ Sci & Technol, Shenzhen Key Lab Hydrogen Energy, Shenzhen 518055, Peoples R China
关键词
Pt utilization; ionomer distribution; mass transport resistance; micromodification; CO adsorption; OXYGEN-TRANSPORT RESISTANCE; DIFFUSION RESISTANCE; IONOMER; PERFORMANCE; REDUCTION; SURFACE; NAFION; PERMEABILITY; VOLTAMMETRY; ELECTRODES;
D O I
10.1021/acsami.2c16524
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Improving the utilization of platinum in proton-exchange membrane (PEM) fuel cells is critical to reducing their cost. In the past decade, numerous Pt-based oxygen reduction reaction catalysts with high specific and mass activities have been developed. However, the high activities are mostly achieved in rotating disk electrode (RDE) measurement and have rarely been accomplished at the membrane electrode assembly (MEA) level. The failure of these direct translations from RDE to MEA has been well documented with several key reasons having been previously identified. One of them is the resistance caused by complex mass transport pathways in the MEA. Herein, we improve the proton and oxygen transportations in the MEA by building a thin and uniform distribution of ionomer on the catalyst surface. As a result, a PEM fuel cell design is capable of showing a current density improvement of 38% at the same voltage (0.6 V) under the H-2/air operation.
引用
收藏
页码:903 / 913
页数:11
相关论文
共 50 条
  • [21] Influence of gas diffusion layer on Pt catalyst prepared by electrodeposition for proton exchange membrane fuel cells
    Ruengkit, Chanakan
    Tantavichet, Nisit
    THIN SOLID FILMS, 2017, 636 : 116 - 126
  • [22] Mesoscale Physics in the Catalyst Layer of Proton Exchange Membrane Fuel Cells
    Grunewald, Jonathan B.
    Mistry, Aashutosh N.
    Verma, Ankit
    Goswami, Navneet
    Mukherjee, Partha P.
    Fuller, Thomas. F.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (07) : F3089 - F3092
  • [23] Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells
    索妮
    曹龙生
    秦晓平
    邵志刚
    Chinese Physics B, 2022, (12) : 619 - 628
  • [24] Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells
    Suo, Ni
    Cao, Longsheng
    Qin, Xiaoping
    Shao, Zhigang
    CHINESE PHYSICS B, 2022, 31 (12)
  • [25] Impact of ionomer film on effective transport properties and performance of cathode catalyst layer of proton-exchange membrane fuel cells
    Gao, Yuan
    Qu, Weixiong
    Zhu, Rui
    IONICS, 2020, 26 (07) : 3425 - 3435
  • [26] Impact of ionomer film on effective transport properties and performance of cathode catalyst layer of proton-exchange membrane fuel cells
    Yuan Gao
    Weixiong Qu
    Rui Zhu
    Ionics, 2020, 26 : 3425 - 3435
  • [27] Assessing Utilization Boundaries for Pt-Based Catalysts in an Operating Proton-Exchange Membrane Fuel Cell
    Ronovsky, Michal
    Pan, Lujin
    Klingenhof, Malte
    Martens, Isaac
    Fusek, Lukas
    Kus, Peter
    Chattot, Raphael
    Mirolo, Marta
    Dionigi, Fabio
    Burdett, Harriet
    Sharman, Jonathan
    Strasser, Peter
    Bonastre, Alex Martinez
    Drnec, Jakub
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (17) : 8660 - 8665
  • [28] Pt and PtRu catalyst bilayers increase efficiencies for ethanol oxidation in proton exchange membrane electrolysis and fuel cells
    Altarawneh, Rakan M.
    Pickup, Peter G.
    JOURNAL OF POWER SOURCES, 2017, 366 : 27 - 32
  • [29] Modeling the Dynamic Behavior of Proton-Exchange Membrane Fuel Cells
    Olapade, Peter O.
    Meyers, Jeremy P.
    Mukundan, Rangachary
    Davey, John R.
    Borup, Rodney L.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (05) : B536 - B549
  • [30] Reactivation System for Proton-Exchange Membrane Fuel-Cells
    Restrepo, Carlos
    Avino, Oriol
    Calvente, Javier
    Romero, Alfonso
    Milanovic, Miro
    Giral, Roberto
    ENERGIES, 2012, 5 (07): : 2404 - 2423