Electrically tunable topological phase transition in non-Hermitian optical MEMS metasurfaces

被引:17
|
作者
Ding, Fei [1 ]
Deng, Yadong [1 ]
Meng, Chao [1 ]
Thrane, Paul C. V. [1 ,2 ]
Bozhevolnyi, Sergey I. [1 ]
机构
[1] Univ Southern Denmark, Ctr Nano Opt, Campusvej 55, DK-5230 Odense, Denmark
[2] SINTEF Microsyst & Nanotechnol, Gaustadalleen 23C, N-0737 Oslo, Norway
关键词
EXCEPTIONAL POINT; ELECTROMAGNETIC METASURFACES; PHOTONICS; PHYSICS;
D O I
10.1126/sciadv.adl4661
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Exceptional points (EPs), unique junctures in non-Hermitian open systems where eigenvalues and eigenstates simultaneously coalesce, have gained notable attention in photonics because of their enthralling physical principles and unique properties. Nonetheless, the experimental observation of EPs, particularly within the optical domain, has proven rather challenging because of the grueling demand for precise and comprehensive control over the parameter space, further compounded by the necessity for dynamic tunability. Here, we demonstrate the occurrence of optical EPs when operating with an electrically tunable non-Hermitian metasurface platform that synergizes chiral metasurfaces with piezoelectric MEMS mirrors. Moreover, we show that, with a carefully constructed metasurface, a voltage-controlled spectral space can be finely tuned to access not only the chiral EP but also the diabolic point characterized by degenerate eigenvalues and orthogonal eigenstates, thereby allowing for dynamic topological phase transition. Our work paves the way for developing cutting-edge optical devices rooted in EP physics and opening uncharted vistas in dynamic topological photonics.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Non-Hermitian topological phase transitions controlled by nonlinearity
    Tianxiang Dai
    Yutian Ao
    Jun Mao
    Yan Yang
    Yun Zheng
    Chonghao Zhai
    Yandong Li
    Jingze Yuan
    Bo Tang
    Zhihua Li
    Jun Luo
    Wenwu Wang
    Xiaoyong Hu
    Qihuang Gong
    Jianwei Wang
    Nature Physics, 2024, 20 : 101 - 108
  • [22] Non-Hermitian topological magnonics
    Yu, Tao
    Zou, Ji
    Zeng, Bowen
    Rao, J. W.
    Xia, Ke
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2024, 1062 : 1 - 86
  • [23] Non-Hermitian topological photonics
    Nasari, Hadiseh
    Pyrialakos, Georgios G.
    Christodoulides, Demetrios N.
    Khajavikhan, Mercedeh
    OPTICAL MATERIALS EXPRESS, 2023, 13 (04) : 870 - 885
  • [24] Non-Hermitian laser arrays with tunable phase locking
    Longhi, Stefano
    OPTICS LETTERS, 2022, 47 (08) : 2040 - 2043
  • [25] Topological Phase Transition Driven by Infinitesimal Instability: Majorana Fermions in Non-Hermitian Spintronics
    Okuma, Nobuyuki
    Sato, Masatoshi
    PHYSICAL REVIEW LETTERS, 2019, 123 (09)
  • [26] Non-Hermitian Topological Sensors
    Budich, Jan Carl
    Bergholtz, Emil J.
    PHYSICAL REVIEW LETTERS, 2020, 125 (18)
  • [27] Non-Hermitian topological ohmmeter
    Koenye, Viktor
    Ochkan, Kyrylo
    Chyzhykova, Anastasiia
    Budich, Jan Carl
    van den Brink, Jeroen
    Fulga, Ion Cosma
    Dufouleur, Joseph
    PHYSICAL REVIEW APPLIED, 2024, 22 (03):
  • [28] Non-Hermitian Topological Photonics
    Zhen, Bo
    Zhou, Hengyun
    Peng, Chao
    Yoon, Yoseob
    Hsu, Chia Wei
    Nelson, Keith A.
    Shen, Huitao
    Fu, Liang
    Joannopoulos, John D.
    Soljacic, Marin
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [29] Topological phase transition of the extended non-Hermitian Su-Schrieffer-Heeger model
    Li, Shuai
    Liu, Min
    Li, Fuli
    Liu, Bo
    PHYSICA SCRIPTA, 2021, 96 (01)
  • [30] Non-Hermitian Topology in Hermitian Topological Matter
    Hamanaka, Shu
    Yoshida, Tsuneya
    Kawabata, Kohei
    PHYSICAL REVIEW LETTERS, 2024, 133 (26)