Detecting hidden states in stochastic dynamical systems

被引:0
|
作者
Succar, Rayan [1 ,2 ]
Boldini, Alain [1 ,2 ,3 ]
Porfiri, Maurizio [1 ,2 ,4 ]
机构
[1] NYU, Tandon Sch Engn, Dept Mech & Aerosp Engn, Brooklyn, NY 11201 USA
[2] NYU, Ctr Urban Sci & Progress, Brooklyn, NY 11201 USA
[3] New York Inst Technol, Dept Mech Engn, Old Westbury, NY 11568 USA
[4] NYU, Tandon Sch Engn, Dept Biomed Engn, Brooklyn, NY 11201 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 01期
基金
美国国家科学基金会;
关键词
STATISTICAL-MECHANICS; MODELS; NETWORKS; PHYSICS; VALUES;
D O I
10.1103/PhysRevResearch.6.013149
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Inferring the number of states of a stochastic system from partial measurements is a fundamental problem in physics, for which methodological tools remain scarce. It is sometimes difficult to distinguish the stochastic dynamical states from measurements, deceiving us into incorrect models and flawed understanding of natural phenomena. Here, we propose a model-free statistical framework, grounded in network and control theory, to estimate the number of states of a stochastic system from perceptible dynamics. The framework extends previous techniques for deterministic systems, based on the rank of ancillary matrices. We show applications of our approach to a variety of physics domains, such as statistical mechanics, biophysics, physical chemistry, and epidemiology.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] DETECTING HIDDEN FREQUENCIES IN DYNAMICAL TIME-SERIES - A NUMERICAL REPORT
    ORTEGA, G
    ROMANELLI, L
    CHAOS SOLITONS & FRACTALS, 1995, 6 : 411 - 415
  • [32] Detecting Exceptions in Commitment Protocols: Discovering Hidden States
    Kafali, Ozguer
    Yolum, Pinar
    LANGUAGES, METHODOLOGIES, AND DEVELOPMENT TOOLS FOR MULTI-AGENT SYSTEMS, 2010, 6039 : 112 - 127
  • [33] Stochastic modelling of nonlinear dynamical systems
    Garbaczewski, P
    STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 313 - 318
  • [34] Autonomous Stochastic Perturbations of Dynamical Systems
    Mark Freidlin
    Acta Applicandae Mathematica, 2003, 78 : 121 - 128
  • [35] Detecting exceptions in commitment protocols: Discovering hidden states
    Department of Computer Engineering, Boǧaziçi University, TR-34342, Bebek, Istanbul, Turkey
    Lect. Notes Comput. Sci., (112-127):
  • [36] Stochastic Safety for Random Dynamical Systems
    Bujorianu, Manuela L.
    Wisniewski, Rafal
    Boulougouris, Evangelos
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 1340 - 1345
  • [37] Probabilistic predictability of stochastic dynamical systems☆
    Xu, Tao
    Li, Yushan
    He, Jianping
    AUTOMATICA, 2025, 174
  • [38] Asymptotic curvature for stochastic dynamical systems
    Cranston, M
    Le Jan, Y
    STOCHASTIC DYNAMICS, 1999, : 327 - 338
  • [39] The similarity method in stochastic dynamical systems
    Misawa, T
    IMA JOURNAL OF APPLIED MATHEMATICS, 1997, 59 (03) : 261 - 272
  • [40] Attractors for Stochastic lattice dynamical systems
    Bates, PW
    Lisei, H
    Lu, KN
    STOCHASTICS AND DYNAMICS, 2006, 6 (01) : 1 - 21