A Comprehensive Review of Feature Selection and Feature Selection Stability in Machine Learning

被引:10
|
作者
Buyukkececi, Mustafa [1 ]
Okur, Mehmet Cudi [2 ]
机构
[1] Univerlist, Izmir, Turkiye
[2] Yasar Univ, Fac Engn, Dept Software Engn, Izmir, Turkiye
来源
GAZI UNIVERSITY JOURNAL OF SCIENCE | 2023年 / 36卷 / 04期
关键词
Feature selection; Dimensionality reduction; Types of feature selection; Feature selection stability; Stability measures; MICROARRAY; ALGORITHMS; BIAS;
D O I
10.35378/gujs.993763
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Feature selection is a dimension reduction technique used to select features that are relevant to machine learning tasks. Reducing the dataset size by eliminating redundant and irrelevant features plays a pivotal role in increasing the performance of machine learning algorithms, speeding up the learning process, and building simple models. The apparent need for feature selection has aroused considerable interest amongst researchers and has caused feature selection to find a wide range of application domains including text mining, pattern recognition, cybersecurity, bioinformatics, and big data. As a result, over the years, a substantial amount of literature has been published on feature selection and a wide variety of feature selection methods have been proposed. The quality of feature selection algorithms is measured not only by evaluating the quality of the models built using the features they select, or by the clustering tendencies of the features they select, but also by their stability. Therefore, this study focused on feature selection and feature selection stability. In the pages that follow, general concepts and methods of feature selection, feature selection stability, stability measures, and reasons and solutions for instability are discussed.
引用
收藏
页码:1506 / 1520
页数:15
相关论文
共 50 条
  • [21] Feature Extraction, Feature Selection and Machine Learning for Image Classification: A Case Study
    Popescu, Madalina Cosmina
    Sasu, Lucian Mircea
    2014 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM), 2014, : 968 - 973
  • [22] The Analysis of Feature Selection with Machine Learning for Indoor Positioning
    Aydin, Hurkan M.
    Ali, Muhammad Ammar
    Soyak, Ece Gelal
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [23] Automating Procedurally Fair Feature Selection in Machine Learning
    Belitz, Clara
    Jiang, Lan
    Bosch, Nigel
    AIES '21: PROCEEDINGS OF THE 2021 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, 2021, : 379 - 389
  • [24] An efficient feature subset selection approach for machine learning
    Rincy, N. Thomas
    Gupta, Roopam
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (08) : 12737 - 12830
  • [25] Correlation Based Feature Selection Algorithm for Machine Learning
    Gopika, N.
    Kowshalaya, A. Meena
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES 2018), 2018, : 692 - 695
  • [26] Correlated Differential Privacy: Feature Selection in Machine Learning
    Zhang, Tao
    Zhu, Tianqing
    Xiong, Ping
    Huo, Huan
    Tari, Zahir
    Zhou, Wanlei
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (03) : 2115 - 2124
  • [27] Building a pronominalization model by feature selection and machine learning
    Roh, JE
    Lee, JH
    NATURAL LANGUAGE PROCESSING - IJCNLP 2004, 2005, 3248 : 566 - 575
  • [28] Converter Circuits to Machine Learning: Optimal Feature Selection
    Khamis, Ahmed K.
    Agamy, Mohammed
    2022 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2022,
  • [29] Feature selection in a machine learning system for texture classification
    Baik, SW
    Bala, J
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY V, 1998, 3370 : 261 - 268
  • [30] INTRUSION DETECTION BASED ON MACHINE LEARNING AND FEATURE SELECTION
    Alaoui, Souad
    El Gonnouni, Amina
    Lyhyaoui, Abdelouahid
    MENDEL 2011 - 17TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING, 2011, : 199 - 206