Modelling change detection for unveiling urban transitions: using machine learning algorithms and Sentinel-2 data in Larache City, Morocco

被引:4
|
作者
Chafiq, Tarik [1 ]
Hmamou, Mohamed [1 ]
Ouhammou, Imrane [1 ]
Azmi, Rida [2 ]
Kumar, Manoj [3 ]
机构
[1] Univ Hassan II Casablanca, Fac Sci Ben MSik, Appl Geol Geoinformat & Environm Lab LGAGE, Casablanca, Morocco
[2] Mohamed VI Polytech Univ UM6P, Ctr Urban Syst CUS, Ben Guerir, Morocco
[3] Forest Res Inst FRI, GIS Ctr, IT & GIS Discipline, PO New Forest, Dehra Dun 248006, Uttarakhand, India
关键词
LULC classification; Remote sensing; Land management; Machine learning; Google earth engine;
D O I
10.1007/s40808-023-01860-w
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In achieving sustainable urban development, the intricate dynamics of spatio-temporal land use changes and their regional driving forces necessitate comprehensive investigation, particularly in developing countries. This study aims to analyze the detection of land use and land cover (LULC) changes, focusing on urban sprawl and future predictions. The performance of five supervised machine learning algorithms for LULC classification in Larache City, Morocco, during 2015-2021 is evaluated, addressing the research question of which algorithm best captures LULC changes accurately. Based on the theoretical foundation that accurate LULC mapping informs sustainable resource management, a theoretical framework rooted in remote sensing and machine learning principles is employed. The research methodology involves the analysis of archived Sentinel 2 imagery to detect LULC changes, incorporating change detection modelling and metrics such as overall accuracy and Kappa coefficient. Results highlight the superiority of the Support Vector Machine (SVM) algorithm, with an average overall accuracy of 93.67% and a Kappa coefficient of 0.93 across the study years. In contrast, the Classification and Regression Tree (CART) algorithm achieves a lower accuracy of 82.67% and a Kappa coefficient of 0.79. The implications are substantial. Accurate LULC classification is pivotal for effective urban planning and resource management, especially in developing countries. The accuracy of SVM underscores its potential as a robust tool for developing LULC maps, aiding decision-makers in land management strategies. This study contributes to understanding LULC dynamics, urban sprawl, and future projections, thereby providing essential data for informed urban development decisions and sustainable land use strategies. As cities in the developing world evolve, integrating precise LULC insights becomes paramount for achieving balanced urban growth and environmental conservation.
引用
收藏
页码:1711 / 1725
页数:15
相关论文
共 50 条
  • [21] Crop type mapping using LiDAR, Sentinel-2 and aerial imagery with machine learning algorithms
    Prins, Adriaan Jacobus
    Van Niekerk, Adriaan
    GEO-SPATIAL INFORMATION SCIENCE, 2021, 24 (02) : 215 - 227
  • [22] Extracting tea plantations in complex landscapes using Sentinel-2 imagery and machine learning algorithms
    Chen, Panpan
    Zhao, Chunjiang
    Duan, Dandan
    Wang, Fan
    COMMUNITY ECOLOGY, 2022, 23 (02) : 163 - 172
  • [23] LAND COVER MAPPING IN CAMAU PROVINCE BY MACHINE LEARNING ALGORITHMS USING SENTINEL-2 IMAGERY
    Van Anh, Tran
    Hang, Le Minh
    Hanh, Tran Hong
    Nghi, Le Thanh
    Anh, Tran Trung
    Chi, Nguyen Cam
    Khiên, Ha Trung
    43rd Asian Conference on Remote Sensing, ACRS 2022, 2022,
  • [24] Plastic debris detection along coastal waters using Sentinel-2 satellite data and machine learning techniques
    Nivedita, V.
    Begum, S. Sabarunisha
    Aldehim, Ghadah
    Alashjaee, Abdullah M.
    Arasi, Munya A.
    Sikkandar, Mohamed Yacin
    Jayasankar, T.
    Vivek, S.
    MARINE POLLUTION BULLETIN, 2024, 209
  • [25] SENTINEL-1 & SENTINEL-2 DATA FOR SOIL TILLAGE CHANGE DETECTION
    Satalino, G.
    Mattia, F.
    Balenzano, A.
    Lovergine, F. P.
    Rinaldi, M.
    De Santis, A. P.
    Ruggieri, S.
    Nafria Garcia, D. A.
    Paredes Gomez, V.
    Ceschia, E.
    Planells, M.
    Le Toan, T.
    Ruiz, A.
    Moreno, J. F.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6627 - 6630
  • [26] Comparing machine learning techniques for aquatic vegetation classification using Sentinel-2 data
    Piaser, Erika
    Villa, Paolo
    2022 IEEE 21ST MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (IEEE MELECON 2022), 2022, : 465 - 470
  • [27] Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa
    Mondal, Pinki
    Liu, Xue
    Fatoyinbo, Temilola E.
    Lagomasino, David
    REMOTE SENSING, 2019, 11 (24)
  • [28] Evaluation of machine learning algorithms for forest stand species mapping using Sentinel-2 imagery and environmental data in the Polish Carpathians
    Grabska, Ewa
    Frantz, David
    Ostapowicz, Katarzyna
    REMOTE SENSING OF ENVIRONMENT, 2020, 251
  • [29] Mapping heterogeneous land use/land cover and crop types in Senegal using sentinel-2 data and machine learning algorithms
    Gumma, Murali Krishna
    Panjala, Pranay
    Teluguntla, Pardhasaradhi
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
  • [30] Machine Learning for Cloud Detection of Globally Distributed Sentinel-2 Images
    Cilli, Roberto
    Monaco, Alfonso
    Amoroso, Nicola
    Tateo, Andrea
    Tangaro, Sabina
    Bellotti, Roberto
    REMOTE SENSING, 2020, 12 (15)