DYNAMICS OF A DISCRETE SIZE-STRUCTURED CHEMOSTAT WITH VARIABLE NUTRIENT SUPPLY

被引:2
|
作者
Amster, Pablo [1 ]
Robledo, Gonzalo [2 ]
Sepulveda, Daniel [3 ]
机构
[1] Univ Buenos Aires, Dept Matemat, Buenos Aires, DF, Argentina
[2] Univ Chile, Dept Matemat, Santiago, Chile
[3] Univ Tecnol Metropolitana, Dept Matemat, Santiago, Chile
来源
关键词
Chemostat; Difference equations; Periodic solutions; Nonautonomous dynamics; GROWTH; MODEL; TIME;
D O I
10.3934/dcdsb.2023048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article revisits and extends to the nonautonomous framework the results about the dynamics of a discrete and nonlinear matrix model describing the growth of a size-structured single microbial population in an autonomous chemostat, which has been introduced by T.B. Gage et.al and H.L. Smith. The first and the second result provide a threshold determining either the extinction or the persistence of the total biomass. The main result establishes a set of sufficient conditions ensuring the existence, uniqueness and global attractiveness of an omega-periodic solution.
引用
收藏
页码:4937 / 4967
页数:31
相关论文
共 50 条
  • [21] One Model of Size-Structured Population Dynamics
    Nikol'skii, M. S.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 287 : S128 - S133
  • [22] Age-structured & Size-structured Population Dynamics Models
    El-Doma, Mohamed O.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1535 - 1535
  • [23] Dynamics of a chemostat with periodic nutrient supply and delay in the growth
    Amster, Pablo
    Robledo, Gonzalo
    Sepulveda, Daniel
    NONLINEARITY, 2020, 33 (11) : 5839 - 5860
  • [24] Optimal harvesting for nonlinear size-structured population dynamics
    Kato, Nobuyuki
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 1388 - 1398
  • [25] BOUNDARY CONTROLLABILITY OF NONLINEAR SIZE-STRUCTURED POPULATION DYNAMICS
    Wang, Shu-Ping
    He, Ze-Rong
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2016,
  • [26] Size-structured population dynamics models and their numerical solutions
    Abia, LM
    Angulo, O
    López-Marcos, JC
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2004, 4 (04): : 1203 - 1222
  • [27] Effects of local interaction and dispersal on the dynamics of size-structured populations
    Adams, Thomas
    Ackland, Graeme
    Marion, Glenn
    Edwards, Colin
    ECOLOGICAL MODELLING, 2011, 222 (08) : 1414 - 1422
  • [28] Estimating spatio-temporal dynamics of size-structured populations
    Kristensen, Kasper
    Thygesen, Uffe Hogsbro
    Andersen, Ken Haste
    Beyer, Jan E.
    CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 2014, 71 (02) : 326 - 336
  • [29] Dynamics of a size-structured predator–prey model with chemotaxis mechanism
    Tian, Xuan
    Guo, Shangjiang
    Nonlinear Analysis: Real World Applications, 2025, 81
  • [30] Sustainable dynamics of size-structured forest under climate change
    Hritonenko, Natali
    Yatsenko, Yuri
    Goetz, Renan-Ulrich
    Xabadia, Angels
    APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1439 - 1443