Positive radial solutions for a class of (p, q) Laplacian in a ball

被引:2
|
作者
Hai, D. D. [1 ]
Shivaji, R. [2 ]
Wang, X. [3 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[2] Univ North Cartolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
[3] Jiangsu Univ, Inst Appl Syst Anal, Zhenjiang 212013, Jiangsu, Peoples R China
关键词
(p; q); Laplacian; Infinite semipositone; Positive solutions; EXISTENCE; EQUATION;
D O I
10.1007/s11117-022-00959-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a positive radial solution to the (p, q) Laplacian problem {-Delta(p)u - Delta(q)u = lambda f(u) in Omega, u = 0 on partial derivative Omega, where p > q > 1, Delta(r)u = div(vertical bar Delta u vertical bar(r-2)del u), Omega = B(0, 1) is the open unit ball in R-n, f:(0, infinity) -> R is p-sublinear at infinity with possible singularity and infinite semipositone structure at 0, and lambda > 0 is a large parameter.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Uniqueness of positive radial solutions for a class of semipositone problems on the exterior of a ball
    Ko, Eunkyung
    Ramaswamy, Mythily
    Shivaji, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) : 399 - 409
  • [32] Multiple positive solutions for a class of (2, p)-Laplacian equation
    Li, Fuyi
    Rong, Ting
    Liang, Zhanping
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (12)
  • [33] Existence of positive solutions for a class of p(x)-Laplacian systerns
    Zhang, Qihu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (02) : 591 - 603
  • [34] ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS FOR THE RADIAL P-LAPLACIAN EQUATION
    Ben Othman, Sonia
    Maagli, Habib
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [35] On critical exponent for the existence and multiplicity of positive weak solutions for a class of (p, q)-Laplacian nonlinear system
    Ghaemi, M. B.
    Afrouzi, G. A.
    Rasouli, S. H.
    Choubin, M.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 3 (04): : 432 - 439
  • [36] EXISTENCE AND NONEXISTENCE OF POSITIVE RADIAL SOLUTIONS FOR A CLASS OF p-LAPLACIAN SUPERLINEAR PROBLEMS WITH NONLINEAR BOUNDARY CONDITIONS
    Alotaibi, Trad
    Hai, D. D.
    Shivaji, R.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (09) : 4655 - 4666
  • [37] Positive solution for a class of coupled (p,q)-Laplacian nonlinear systems
    Eder M Martins
    Wenderson M Ferreira
    Boundary Value Problems, 2014 (1)
  • [38] Positive solution for a class of coupled (p, q)-Laplacian nonlinear systems
    Martins, Eder M.
    Ferreira, Wenderson M.
    BOUNDARY VALUE PROBLEMS, 2014,
  • [39] Radial Symmetry and Monotonicity of Solutions to a System Involving Fractional p-Laplacian in a Ball
    Cao, Linfen
    Wang, Xiaoshan
    Dai, Zhaohui
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [40] On a Positive Solutions for (p, q)-Laplacian Steklov Problem with Two Parameters
    Boukhsas, A.
    Zerouali, A.
    Chakrone, O.
    Karim, B.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40