Deep learning-based wind noise prediction study for automotive clay model

被引:1
|
作者
Huang, Lina [1 ,2 ]
Wang, Dengfeng [1 ]
Cao, Xiaolin [1 ]
Zhang, Xiaopeng [1 ]
Huang, Bingtong [1 ]
He, Yang [1 ]
Grabner, Gottfried [3 ]
机构
[1] Jilin Univ, State Key Lab Automot Simulat & Control, Changchun, Peoples R China
[2] Changchun Univ, Sch Mech & Vehicle Engn, Changchun, Peoples R China
[3] Magna Steyr Fahrzeugtechn AG & CoKG, Graz, Austria
关键词
deep learning; wind noise prediction; clay model; wind tunnel experiments; TRANSMISSION; SELECTION; PRESSURE;
D O I
10.1088/1361-6501/ad1b34
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Analyzing and mitigating wind noise in automobiles is a significant issue within the realm of noise, vibration, and harshness. Due to the intricate nature of aeroacoustic generation mechanisms, current conventional methods for wind noise prediction exhibit limitations. Hence, deep learning methods are introduced to investigate wind noise in the side window area of an automotive clay model. During aeroacoustic wind tunnel experiments, side window vibration data and noise data from the driver were collected at experimental wind speeds of 100 km h-1, 120 km h-1, and 140 km h-1, respectively. These data samples were obtained to be used for training and validation of the wind noise model. Convolutional neural network (CNN), residual neural network (ResNet) and long short-term memory neural network (LSTM) algorithms were separately employed to reveal the complex nonlinear relationship between wind noise and its influencing factors, leading to the establishment of a wind noise prediction model. Simultaneously, these deep learning methods were compared with backpropagation neural network (BPNN), extreme learning machine (ELM), and support vector regression (SVR) methods. Conclusion indicates that the LSTM wind noise prediction model not merely exhibits higher accuracy, but furthermore demonstrates superior generalization capabilities, thereby substantiating the superiority of this method.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Temporally Correlated Deep Learning-Based Horizontal Wind-Speed Prediction
    Li, Lintong
    Escribano-Macias, Jose
    Zhang, Mingwei
    Fu, Shenghao
    Huang, Mingyang
    Yang, Xiangmin
    Zhao, Tianyu
    Feng, Yuxiang
    Elhajj, Mireille
    Majumdar, Arnab
    Angeloudis, Panagiotis
    Ochieng, Washington
    SENSORS, 2024, 24 (19)
  • [12] Deep Learning-Based Electrocardiogram Signal Noise Detection and Screening Model
    Yoon, Dukyong
    Lim, Hong Seok
    Jung, Kyoungwon
    Kim, Tae Young
    Lee, Sukhoon
    HEALTHCARE INFORMATICS RESEARCH, 2019, 25 (03) : 201 - 211
  • [13] A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme
    Lao, Jiangwei
    Chen, Yinsheng
    Li, Zhi-Cheng
    Li, Qihua
    Zhang, Ji
    Liu, Jing
    Zhai, Guangtao
    SCIENTIFIC REPORTS, 2017, 7
  • [14] A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme
    Jiangwei Lao
    Yinsheng Chen
    Zhi-Cheng Li
    Qihua Li
    Ji Zhang
    Jing Liu
    Guangtao Zhai
    Scientific Reports, 7
  • [15] A Deep Learning-Based Soft Sensing Prediction Model for Tubular Furnace
    Wang, Xiaowen
    Zhang, Yongjun
    Guo, Qiang
    Zhang, Fei
    Yildirim, Tanju
    2022 INTERNATIONAL CONFERENCE ON FRONTIERS OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, FAIML, 2022, : 13 - 21
  • [16] A deep learning-based model for prediction of hemorrhagic transformation after stroke
    Jiang, Liang
    Zhou, Leilei
    Yong, Wei
    Cui, Jinluan
    Geng, Wen
    Chen, Huiyou
    Zou, Jianjun
    Chen, Yang
    Yin, Xindao
    Chen, Yu-Chen
    BRAIN PATHOLOGY, 2023, 33 (02)
  • [17] Deep Learning-Based Signal-to-Noise Ratio Prediction for Realistic Wireless Communication
    Zhou, Qiuheng
    Jiang, Wei
    Wang, Donglin
    Schotten, Hans D.
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [18] FedBIP: A Federated Learning-Based Model for Wind Turbine Blade Icing Prediction
    Zhang, Dongtian
    Tian, Weiwei
    Cheng, Xu
    Shi, Fan
    Qiu, Hong
    Liu, Xiufeng
    Chen, Shengyong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [19] An intelligent deep learning based prediction model for wind power generation
    Almutairi, Abdulaziz
    Alrumayh, Omar
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101
  • [20] Deep Learning-Based Conformal Prediction of Toxicity
    Zhang, Jin
    Norinder, Ulf
    Svensson, Fredrik
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (06) : 2648 - 2657